Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Statistical Characteristics of Signal Parameter Estimation by Normalized Correlation Function Maximization

https://doi.org/10.32603/1993-8985-2018-21-3-15-22

Abstract

In this paper differences between Fisher Information Matrix (FIM) and inverse covariation matrix of normalized correlation estimations for white and colored noise are investigated. It’s shown that implementation of normalized correlation function estimation leads to modification of maximum likelihood estimation FIM elements, so in case of arbitrary energy affected parameter vector, variance of estimation by normalized correlation function maximization is not equal to Cramer–Rao lower bound. Statistical characteristics of joint Doppler stretch and delay estimation by maximization of normalized correlation function for signal with nuisance parameters are derived in this paper. It’s shown that normalized correlator is equal to wideband ambiguity function, but this method of estimation follows from Cauchy–Schwarz inequality without using energy conservation assumptions. Besides, it is proved that estimation of Doppler stretch and delay by normalized correlation function or WBAF of signal with random initial phase and gain is asymptotically unbiased and effective.

About the Authors

I. V. Gogolev
JSC "Vector" .
Russian Federation

Ivan V. Gogolev – Master’s Degree in Infocommunication Systems (2014), postgraduate student of Department of Radio Electronic Equipment of Saint Petersburg Electrotechnical University "LETI". Engineer (2012) in Research and Development Laboratory of JSC «SRI "Vector"» (Saint Petersburg). The author of 14 scientific publications. Area of expertise: passive location, statistical radio engineering. 

10, Kantemirovskaya Str., 197342, St. Petersburg.



G. Yu. Yashin
JSC "Vector" .
Russian Federation

Gennady Yu. Yashin – Ph.D. in Physics and Mathematics (1980), senior specialist in research institute JSC «SRI "Vector"» (Saint Petersburg). The author of more than 60 scientific publications. Area of expertise: passive location; statistical radiotechnics. 

10, Kantemirovskaya Str., 197342, St. Petersburg.



References

1. Swick D. A. An Ambiguity Function Independent of Assumptions About Bandwidth and Carrier Frequency. NRL Report 6471, 1966. Available at: http://www.dtic.mil/dtic/tr /fulltext/u2/645918.pdf (accessed: 20.02.2018).

2. Swick D. A. A Review of Wideband Ambiguity Function. NRL Report 6994, 1969. Available at: http://www.norbertwiener.umd.edu/crowds/documents /Swick69.pdf (accessed: 25.12.2017).

3. Gassner R., Cooper G. Note on a Generalized Ambiguity Function. IEEE Trans. on Information Theory. 1967, vol. 13, no. 1, p. 126. Assumptions About Bandwidth and Carrier Frequency. NRL Report 6471, 1966. Available at: http://www.dtic.mil/dtic/tr /fulltext/u2/645918.pdf (accessed: 20.02.2018).

4. Swerling P. Parameter Estimation Accuracy Formulas. IEEE Trans. on Information Theory. 1964, vol. 10, no. 4, pp. 302–314.

5. Jin Q., Wong K. M., Luo Z. The Estimation of Time Delay and Doppler Stretch of Wideband Signals. IEEE Trans. on Signal Processing. 1995, vol. 43, iss. 4, pp. 904–916.

6. Jin Q., Wong K. M., Luo Z. Wideband Time Delay and Doppler Stretch Estimation: Application of Wavelet Transform and the Optimum Signal. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-1993), Minneapolis, USA, 27–30 Apr. 1993. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=319100 (accessed: 25.12.2017).

7. Niu X. X., Ching P. C. Accurate Time Delay and Doppler Stretch Estimation in Noisy Environment. Proc. on IEEE TENCON, Perth, WA, Australia, 29–29 Nov. 1996. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=608424319100 (accessed: 25.12.2017).

8. Muhammad W., Meste O., Rix H., Farina D. A Novel Approach for Joint Estimation of Time Delay and Scale Factor with Applications to the M-Wave Analysis. Proc. on IEEE Engineering in Medicine and Biology Society conf. Istanbul, Turkey, 25–28 Oct. 2001, pp.1093–1096. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1020380 (accessed: 20.02.2018).

9. Wei H., Ye S., Wan Q. Influence of Phase on Cramer-Rao Lower Bounds for Joint Time Delay and Doppler Stretch Estimation. Proc. of 9th Intern. Symp. on Signal Processing and Its Applications (ISSPA-2007), Sharjah, 12–15 Feb. 2007. Available at: https://ieeexplore.ieee.org/stamp /stamp.jsp?tp=&arnumber=4555336 (accessed: 20.02.2018).

10. Wei Yang, Yaowu Shi. Theoretical Study on Time Delay and Doppler Stretch Estimation of Chirp Signal Based on Wavelet-Cumulants. Proc. on 3rd IEEE ICCSIT, Chengdu, China, 9–11 July 2010. Available at: https://ieeexplore.ieee.org/stamp /stamp.jsp?tp=&arnumber=5564138 (accessed: 20.02.2018).

11. Weiss L. G. Wavelets and Wideband Correlation Processing. IEEE Sign. Proc. Magazine Jan. 1994, no. 1, pp. 13–32.

12. Van Trees H. L. Detection, estimation and modulation theory. Part 1. New York, Wiley, 1968, 626 p.

13. Hudson D. J. Statistics. Lectures on Elementary Statistics and Probability. CERN, Geneva, 1963, 101 p.

14. Gogolev I.V. Doppler Stretch and Delay CramerRao Lower Bound for Signal with Large Bandwidth. Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika [Journal of the Russian Universities. Radioelectronics], 2016, no. 6, pp. 3–6. (In Russian)

15. Kulikov E. I., Trifonov A. P. Otsenka parametrov signalov na fone pomekh [Signal Parameter Estimation on Noised Environment]. Moscow, Soviet Radio publ., 1978, 296 p. (In Russian)


Review

For citations:


Gogolev I.V., Yashin G.Yu. Statistical Characteristics of Signal Parameter Estimation by Normalized Correlation Function Maximization. Journal of the Russian Universities. Radioelectronics. 2018;(3):15-22. (In Russ.) https://doi.org/10.32603/1993-8985-2018-21-3-15-22

Views: 851


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)