Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Formation Mechanisms for Hetero-Phase Ferroelectric Films of Lead Zirconate Titanate

https://doi.org/10.32603/1993-8985-2018-21-2-26-36

Abstract

An experimental and theoretical study of the formation processes of "impurity" phase inclusions in ferroelectric oxides is carried out via example of polycrystalline lead zirconate-titanate (PZT) films. A feature of these compositions is relatively high volatility of lead oxides, which can lead to deficiency of these components in the composition of the ferroelectric film formed during high-temperature crystallization. To avoid lead losses, some excess is added to the solution in the process of synthesis. Experimental samples of PZT films are obtained using sol-gel method with different contents of lead oxide, the crystallization of the ferroelectric phase of the films is carried out in air at 600 °C. In the films, the inclusions of lead oxide impurity phase are found, and the size distribution of these inclusions are obtained. Model concepts are presented and a system of equations is proposed describing the dispersed inclusions formation kinetics of new phases of different stoichiometric composition at the interfaces in polycrystalline films of multicomponent ferroelectric oxides due to bulk diffusion and grain-boundary segregation. Comparison of the experimental data with the theoretical model gives qualitative agreement. The approach generality makes it possible to extend the model to other systems of multicomponent ferroelectric polycrystalline materials.

About the Authors

N. V. Mukhin
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Nikolay V. Mukhin – Ph.D. in Engineering, Associate Professor of the Department of Quantum Electronic and Optics Electronic Devices 

5, Professor Popov Str., 197376, St. Petersburg



K. G. Elanskaia
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Kristina G. Elanskaia – Bachelor’s Degree in Electronics and Nanoelectronics, 1st year Master’s Degree student, engineer at the Department of Quantum Electronic and Optics Electronic Devices 

5, Professor Popov Str., 197376, St. Petersburg



V. M. Pukhova
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Valentina M. Pukhova – Ph.D. (2015) of University of Milan. Assistant Professor of the Department of Quantum Electronic and Optics Electronic Devices 

5, Professor Popov Str., 197376, St. Petersburg



S. A. Tarasov
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Sergey A. Tarasov – D.Sc. in Engineering, Chief of the Department of Quantum Electronic and Optics Electronic Devices 

5, Professor Popov Str., 197376, St. Petersburg




K. A. Vorotilov
Moscow Technological University
Russian Federation

Konstantin A. Vorotilov – D.Sc. in Engineering), Professor of the Department of Nanoelectronics in Moscow Technological University, head of SEC "Technological Center". 

78, Vernadskogo Pr., 119454, Moscow, Russia




M. V. Rudenko
Belorussian State University of Informatics and Radioelectronics
Belarus

Mariya V. Rudenko – Master’s Degree in Nanotechnologies and Nanomaterials (in Electronics), postgraduate student. Research Associate in the University Nanophotonics Laboratory 

6, Petrusya Bbrovki Str., 220013, Minsk, Republic of Belarus




A. V. Ermachikhin
Ryazan State Radio Engineering University
Russian Federation

Aleksandr V. Ermachikhin – Ph.D. in Physics and Mathematics. Senior scientist, Associate Professor of the Department of Micro-and Nanoelectronics 

59, Gagarin Str., 390005, Ryazan, Russia




References

1. Physics of Ferroelectrics : a Modern Perspective. Ed. by K. M. Rabe, Ch. H. Ahn; J.-M. Triscone. Topics in Applied Physics. Berlin, Springer, 2007, vol. 105, рp.1–30.

2. Vorotilov K. A., Mukhortov V. M., Sigov A. S. Integrirovannye segnetojelektricheskie ustrojstva [Integrated Ferroelectric Devices]. Мoscow, Jenergoatomizdat, 2011, 175 p. (In Russian)

3. Smith G. L., Pulskamp J. S., Sanchez L. M., Potrepka D. M., Proie R. M., Ivanov T. G., Rudy R. Q., Nothwang W. D., Bedair S. S., Meyer C. D., Polcawich R. G. PZTBased Piezoelectric MEMS Technology. Journal of the American Ceramic Society. 2012, vol. 95, pp. 1777–1792.

4. Seregin D. S., Vorotilov K. A., Sigov A. S., Zubkova E. N., Abdullaev D. A., Kotova N. M., Vishnevskij A. S. Formation and Properties of Porous Zirconate-Titanate Films of Lead. Fizika tverdogo tela [Physics of the Solid State]. 2015, vol. 57, iss. 3, pp. 487–490. (In Russian)

5. Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S. SAW Based Phononic Crystal Sensor, Technological Challenges and Solutions. Microsystem Technologies. 2016, vol. 22, iss. 7, pp. 1593–1599.

6. Lucklum R., Zubtsov M., Oseev A., Schmidt M.-P., Hirsch S., Hagemann F. Towards a SAW Based Phononic Crystal Sensor Platform. Joint European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC), Prague, July 21–25, 2013. Piscataway: IEEE, 2913, pp. 69–72. (Art. number 6702207).

7. Kozyrev A., Mikhailov A., Ptashnik S., Petrov P. K., Alford N. Selective Normal Mode Excitation in Multilayer Thin Film Bulk Acoustic Wave Resonators. Applied Physics Letters. 2014, vol. 105, pp. 162910(1–3).

8. Aman A., Majcherek S., Hirsch S., Schmidt B. Microwave Emission From Lead Zirconate Titanate Induced by Impulsive Mechanical Load. Journal of Applied Physics. 2015, vol. 118, pp. 164105(1–7).

9. Fomin A., Dorozhkin S., Fomina M., Koshuro V., Rodionov I., Zakharevich A., Petrova N., Skaptsov A. Composition, Structure and Mechanical Properties of the Titanium Surface after Induction Heat Treatment Followed by Modification with Hydroxyapatite Nanoparticles. Ceramics International. 2016, vol. 42, iss. 9, pp. 10838–10846.

10. Fomin A. A., Steinhauer A. B., Rodionov I. V., Petrova N. V., Zakharevich A. M., Skaptsov A. A., Gribov A. N. Nanostructure of Composite Bioactive Titania Coatings Modified with Hydroxyapatite in Medical Titanium Implants. Biomedical Engineering. 2013, vol. 47, no. 3, pp. 138–141.

11. Tehnologija, svojstva i primenenie segnetojelektricheskih plenok i struktur na ih osnove [Technology, Properties and Applications of Ferroelectric Films and Ferroelectric-Based Structures]. Ed. by V. P. Afanas'ev, A. B. Kozyrev. SPb, Jelmor, 2007, 248 p. (In Russian)

12. Aleksandrov K. S., Beznosikov B. V. Perovskity. Nastojashhee i budushhee. (Mnogoobrazie parafaz, fazovye prevrashhenija, vozmozhnosti sinteza novyh soedinenij) [Perovskites. Present and Future. (Variety of Paraphase, Phase Transformations, Possibilities for New Compound Synthesis)]. Novosibirsk, SO RAN, 2004, 231 p. (In Russian)

13. Fesenko E. G. Semejstvo perovskita i segnetojelektrichestvo [Perovskite Family and Ferroelectricity]. Мoscow, Atomizdat, 1972, 248 p. (In Russian)

14. Prisedskij V. V. Nestehiometricheskie segnetojelektriki AIIVIVO3 [Non-stoichiometric ferroelectrics AIIBIVO3]. Donetsk, Noulidzh, 2011, 268 p. [In Russian]

15. Sanjeev A., Ramesh R. Point Defect Chemistry of Metal Oxide Heterostructures. Ann. Rev. of Materials Research. 1998, vol. 28, pp. 463–499.

16. Tumarkin A. V., Al'mjashev V. I., Razumov S. V., Gajdukov M. M., Gagarin A. G., Altynnikov A. G., Kozyrev A. B. Structural Properties of Barium Strontium Barium Titanate Depending on the Technological Conditions for Film Growth. Fizika tverdogo tela [Physics of the Solid State]. 2015, vol. 57, no. 3, pp. 540–544.

17. Triamnak N., Brennecka G. L., Brown-Shaklee H. J., Rodriguez M. A., Cann D. P. Phase Formation Of BaTiO3– Bi(Zn1/2Ti1/2)O3 Perovskite Ceramics. Journal Of The Ceramic Society Of Japan. 2014, vol. 122, no. 1424, pp. 260–266.

18. Hirose K., Lay T. Discovery of Post-Perovskite and New Views on the Core–Mantle Boundary Region. Elements. 2008, vol. 4, pp. 181–186.

19. Arredondo M., Ramasse Q. M., Bogle K., Nagarajan V. Chemistry of the Fe2O3/BiFeO3 Interface in BiFeO3 Thin Film Heterostructures. Materials. 2010, vol. 3, pp. 5274–5282.

20. Cavalheiro A. A., Barrionuevo S. M., Bruno J. C. Effect of PbO Excess on the Formation of Lead Magnesium Niobate Perovskite by the Columbite Method. Mater Chem phys. 2004, vol. 84, pp. 107–111.

21. Rudenko M. V., Gaponenko N. V. Zavisimost' struktury i morfologii tantalata stroncija vismuta ot temperatury termoobrabotki [Dependence of Bismuth Tantalate of Strontium Structure and Morphology on Heat Treatment Temperature]. Amorfnye i mikrokristallicheskie poluprovodniki: sbornik trudov IX Mezhdunarodnoj konferencii [Amorphous and Microcrystalline Semiconductors: a Collected works of the IX International Conference]. SPb, Izd-vo Politehnicheskogo universiteta, 2014, pp. 292–293. (In Russian)

22. Petrov A. A. Geterofaznye granicy razdela v polikristallicheskih plenkah i strukturah na ih osnove [Heterophase interfaces in polycrystalline films and structures based on them]. SPb, Litera, 2008, 196 p. (In Russian)

23. Senkevich S. V., Pronin I. P., Kaptelov E. Ju., Sergeeva O .N., Il'in N. A., Pronin V. P. Lead oxide effect on dielectric characteristics of heterogeneous Pb(Zr,Ti)O3 + PbO films obtained in a two-step process. Pis'ma v ZhTF [Technical Physics Letters]. 2013, vol. 39, no. 8, pp. 86–94. (In Russian)

24. Delimova L. A., Yuferev V. S., Grekhov I. V., Petrov A. A., Fedorov K. A., Afanas'ev V. P. Thin-Film Capacitor M/Pb(Ti,Zr)O3/M as a Polarization-Sensitive Photocell. Fizika tverdogo tela [Physics of the Solid State]. 2009, vol. 51, no. 6, pp. 1149–1153. (In Russian)

25. Zhigalina O. M., Vorotilov K. A., Khmelenin D. N., Sigov A. S. Structural Features of Zirconate-Lead Titanate Films Formed by Chemical Precipitation from Solutions with Various Lead Contents. Nanoi mikrosistemnaya tekhnika [NanoAnd Microsystems Technology]. 2008, no. 11, pp. 17–22. (In Russian)

26. Afanas'ev V. P., Vorotilov K. A., Mukhin N. V. Synthesis Condition Influence on Properties of Polycrystalline PZT Films of Nonstoichiometric Compositions. Fizika i khimiya stekla [Glass Physics and Chemistry]. 2016, vol. 42, no. 3, pp. 410–419. (In Russian)

27. Mukhin N. V. Diffusion of Intrinsic Defects in Zirconate-Lead Titanate Films in the Process of Heat Treatment in Air. Fizika i khimiya stekla [Glass Physics and Chemistry]. 2014, vol. 40, no. 2, pp. 327–333. (In Russian)

28. Mukhin N. V. Formation Kinetics of GrainBoundary Inclusions of Lead Oxide in Zirconate-Titanate Films of Lead. Fizika i khimiya stekla [Glass Physics and Chemistry]. 2016, vol. 42, no. 1, pp. 89–96. (In Russian)

29. Vorotilov K. A., Mukhin N. V. Influence of Formation Conditions of PZT Films with Different Lead Content on Their Ferroelectric Properties. Fundamental'nye problemy radioelektronnogo priborostroeniya [Fundamental Problems of Radioelectronic Instrumentation]. 2014, vol. 14, no. 3, pp. 185–188. (In Russian)

30. Afanasjev V. P., Chigirev D. A., Mukhin N. V., Petrov A. A. Formation and Properties of PZT-PbO Thin He terophase Films. 2016, vol. 496, iss. 1, pp. 170–176.

31. Rudenko M. V., Gaponenko N. V., Litvinov V. G., Mukhin N. V., Khoroshko L. S., Ermachikhin A. V., Altynnikov A. G. Formation of Sol-Gel Method and Properties of Thin Films of Bismuth Tantalate Strontium. Doklady BGUIR [Reports of BSUIR]. 2015, № 6 (92), рр. 61–64. (In Russian)

32. Vorotilov K. A., Mukhin N. V. Peculiarities of Defect Formation in Nonstoichiometric Nanosized PZT Films with Their Formation using Sol-Gel Method. Nanomaterialy i nanostruktury – XXI vek [Journal Nanomaterials and Nanostructures – XXI Century]. 2014, no. 3, pp. 18–22. (In Russian)

33. Allen T. Particle Size Measurement. London, Chapman and Hall, 1981, 678 p.

34. Koropov A. V. Morphological Stability of TwoDimensional Isolation of a New Phase Located On the Grain Boundary. Zhurnal tekhnicheskoi fiziki [Technical Physics. The Russian Journal of Applied Physics]. 2011, vol. 81, no. 12, pp. 83–88. (In Russian)

35. Kukushkin S. A., Slezov V. V. Dispersionnye sistemy na poverkhnosti tverdykh tel (evolyutsionnyi podkhod) mekhanizmy obrazovaniya tonkikh plenok [Dispersion Systems on Solid Surfaces (Evolutionary Approach) Mechanisms for Thin Film Formation]. SPb, Nauka, 1996, 304 p. (In Russian)

36. Slezov V. V., Davydov L. N., Rogozhkin V. V. Kinetics of impurity segregation at grain boundaries in polycrystals. II. Concentrated solution. Fizika tverdogo tela [Physics of the Solid State]. 1998, vol. 40, no. 2, pp. 251–253. (In Russian)

37. Ivanova T. B., Vas'kin V. V. Generalized Model of New Phase Formation Kinetics. Vestnik udmurtskogo univesiteta. Komp'yutornye nauki [The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science]. 2009, no. 2, pp. 110–117. (In Russian)

38. Izvozchikov V. A., Timofeev O. A. Fotoprovodyashchie okisly svintsa v elektronike [Photoconductive Lead Oxides in Electronics]. Leningrad, Energiya, 1979, 144 p. (In Russian)


Review

For citations:


Mukhin N.V., Elanskaia K.G., Pukhova V.M., Tarasov S.A., Vorotilov K.A., Rudenko M.V., Ermachikhin A.V. Formation Mechanisms for Hetero-Phase Ferroelectric Films of Lead Zirconate Titanate. Journal of the Russian Universities. Radioelectronics. 2018;(2):26-36. (In Russ.) https://doi.org/10.32603/1993-8985-2018-21-2-26-36

Views: 983


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)