Modeling of Three-Dimensional Hierarchical Porous Materials Organized by Means of Nanosphere Self-Assembly
Abstract
The article considers possibilities of using modeling fo r the development of two promising areas of modern nanomaterials, i. e. materials with a hierarchy of pores organized hierarchical self- assembly and hierarchical structures with nanoporous elements. The pore size of hierarchical structures was estimated by means of quasi- two-dimensional projection of three-dimensional deterministic fractal Julien aggregate. Three-dimensional modeling of hierarchical structures organized by means of nanosphere self-assembly was conducted in the Autodesk 3ds Max environment. The article provides analysis of dependences of porosity, density, specific surface area of fractal structures on the size of aggregates (with the appearance of new pore levels of hierarchical materials), dependences of the porosity change in the case of replacement of primary identical spherical particles on porous spheres.
About the Authors
I. E. KononovaRussian Federation
Ph.D. in Physics and Mathematics (2009), Associate Professor (2010) of the Micro- and Nanoelectronics Department of Saint Petersburg Electrotechnical University "LETI". The author of more than 150 scientific publications. Area of expertise: synthesis and diagnostics of nanomaterials
V. A. Moshnikov
Russian Federation
D.Sc. in Physics and Mathematics (1997), Deputy Head of the Micro- and Nanoelectronics Department of Saint Petersburg Electrotechnical University "LETI". The author of more than 450 scientific publications. Area of expertise: nanotechnology and diagnostics
P. V. Kononov
Russian Federation
Ph.D. in Engineering (2016), Assistant of the Department of Descriptive Geometry and Graphics at the Saint Petersburg Mining University. The author of more than 30 scientific publications. Area of expertise: computer simulation, material science of functional and structural materials
References
1. Novye nanomaterialy, sintez, diagnostika. Modelirovanie: Laboratornyi praktikum; ed. by V. A. Moshnikov, O. A. Alexsandrova [New Nanomaterials, Synthesis, Diagnostics. Modeling: Laboratory Practical Work]. SPb, Izd-vo SPbGETU "LETI", 2015, 248 p. (In Russian)
2. Yan Q., Wu A., Yan H., Dong Yu., Tian Ch., Jiang B., Fu H. Gelatin-assisted Synthesis of ZnS Hollow Nanospheres: The Microstructure Tuning, Formation Mechanism and Application for Pt-free Photocatalytic Hydrogen Production. CrystEngComm. 2017, vol. 19, pp. 461-468.
3. Britto Hurtado R., Cortez-Valadez M., Arizpe-Chavez H., Flores-Lopez N. S., Alvarez R. A. B., Flores-Acosta M. Nanowire Networks and Hollow Nanospheres of Ag-Au Bimetallic Alloys at Room Temperature. Nanotechnology. 2017, vol. 28, no. 11, p. 115606.
4. Cheng X., Qu T., Ma Ch., Xiang D., Yu Q., Liu X. Bioactive Mono-Dispersed Nanospheres with Long-Term Antibacterial Effects for Endodontic Sealing. Journal of Mater. Chem. B. 2017, no. 6, pp. 1195-1204.
5. Ranjit G., Cunningham M., Casey K., Geraci A. A. Zeptonewton Force Sensing with Nanospheres in an Optical Lattice. Phys. Rev. A. 2016, vol. 93, p. 053801.
6. Lu W., Xiong C., Zhang G., Huang Q., Zhang R., Zhang JZ., Li C. Targeted Photothermal Ablation of Murine Melanomas with Melanocyte-Stimulating Hormone Analog-Conjugated Hollow Gold Nanospheres. Clin Cancer Res. 2009, vol. 15, no. 3, pp. 876-886.
7. Flores J. C., Torres V., Popa M., Crespo D., Calderon-Moreno J. M. Preparation of core-shell nanospheres of silica-silver: SiO2@Ag. Journal of Non-Crystalline Solids. 2008, vol. 354, no. 52-54, pp. 5435-5439.
8. Ren Ch., Ding X., Fu H. et al. Core-shell superparamagnetic monodisperse nanospheres based on aminofunctionalized CoFe2O4@SiO2 for removal of heavy metals from aqueous solutions. RSC Adv. 2017, no. 7, pp. 6911-6921.
9. Wang Qi-Q., Gonell S., Leenders S. H. A. M., DGrr M., Ivanovic-Burmazovic I., Reek J. N. H. Self-assembled nanospheres with multiple endohedral binding sites preorganize catalysts and substrates for highly efficient reactions. Nature Chemistry. 2016, vol. 8, pp. 225-230.
10. Chen J., Xue Z., Feng S. Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity. Journal of Colloid and Interface Science. 2014, vol. 429, pp. 62-67.
11. Mel A.-A. El, Nakamura R., Bittencourt C. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnol. 2015, vol. 6, pp. 1348-1361.
12. Railsback J. G., Johnston-Peck A. C., Wang Ju., Tracy Jo. B. Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles. ACS Nano. 2010, vol. 4, no. 4, pp. 1913-1920.
13. Tu K. N., Gosele U. Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl. Phys. Lett. 2016, vol. 86, p. 093111.
14. Wang Y., Wang X., Yi G., Xu Ya., Zhou L., Wei Y. Synthesis of layered hierarchical porous SnO2 for enhancing gas sensing performance. Journal of Porous Materials. 2016, pp. 1-8.
15. Bowen Zh., Wuyou F., Huayang L., Xinglin F., Ying W., Hari B., Xiaodong W., Guang S., Jianliang C., Zhanying Zh. Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Applied Surface Science. 2016, vol. 363, pp. 560-565.
16. Chen Z., Lin Z., Yu H., Li N., Xu M. Hydrothermal synthesis of hierarchically porous Rh-doped ZnO and its high gas sensing performance to acetone. Journal of Materials Science: Materials in Electronics. 2016, vol. 27, no. 3, pp. 2633-2639.
17. Abrashova E. V., Gracheva I. E., Moshnikov V. A. Functional nanomaterials based on metal oxides with hierarchical structure. Journal of Physics: Conference Series. 2013, vol. 461, no. 1, p. 012019.
18. Gracheva I. E., Moshnikov V. A., Maraeva E. V, Karpova S. S., Alexsandrova O. A., Alekseyev N. I., Kuznetsov V. V., Olchowik G., Semenov K. N., Startseva A. V., Sitnikov A. V., Olchowik J. M. Nanostructured materials obtained under conditions of hierarchical self-assembly and modified by derivative forms of fullerenes. Journal of Non-Crystalline Solids. 2012, vol. 358, pp. 433-439.
19. Moshnikov V. A., Gracheva I. E., Kuznezov V. V., Maximov A. I., Karpova S. S., Ponomareva A. A. Hierarchical nanostructured semiconductor porous materials for gas sensors. Journal of Non-Crystalline Solids. 2010, vol. 356, no. 37-40, pp. 2020- 2025.
20. Gracheva I. E., Moshnikov V. A., Abrashova E. V. Generalization of the results of analysis of the fractal dimension of sol-gel porous hierarchical structures. Materialovedenie [Materials Science]. 2013, no. 6, pp. 13-22. (In Russian)
21. Gracheva I. E., Moshnikov V. A. Nanomaterialy s ierarkhicheskoi strukturoi por: ucheb. posobie [Nanomaterials with a hierarchical pore structure]. SPb, Izd-vo SPbGETU "LETI", 2011, 107 p. (In Russian)
22. Kononova I. E., Gareev K. G., Moshnikov V. A. Al'myashev V. I. Self-assembly of fractal magnetite-silica aggregates in a static magnetic field. Inorganic Materials. 2014, vol. 50, no. 1, pp. 68-74.
23. Maksimov A. I., Moshnikov V. A., Tairov Yu. M., Shilova O. A. Osnovy zol'-gel'- tekhnologii nanokompozitov [Fundamentals of sol-gel nanocomposite technology]. SPb, Elmor, 2007, 254 p. (In Russian)
24. Jullien R. Fractal Aggregates. Comm. Cond. Mat. Phys. (Comm. Mod. Phys. Pt B). 1987, vol. 13, no. 4, pp. 177-205.
25. Mandelbrot B. B. The fractal geometry of nature. New York, W. H. Freeman and company, 1977, 468 p.
26. Everett D. H. Manual of Symbols and Terminology for Physicochemical Quantities and Units. Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Appl. Chem. 1972, vol. 31, no. 4, pp. 577-638.
Review
For citations:
Kononova I.E., Moshnikov V.A., Kononov P.V. Modeling of Three-Dimensional Hierarchical Porous Materials Organized by Means of Nanosphere Self-Assembly. Journal of the Russian Universities. Radioelectronics. 2017;(5):54-63. (In Russ.)