Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Mapping Long-Term Changes in Forest Cover Using Multispectral Satellite Remote Sensing Data

https://doi.org/10.32603/1993-8985-2025-28-5-16-27

Abstract

Introduction. Shifts in the habitat ranges of tree species are among the continental-scale consequences of climate change. Mapping these shifts and their quantitative estimation are essential for evaluating the carbon balance. In this work, a method for mapping long-term changes in forest cover, thus permitting evaluation of treeline shifts, is demonstrated on the example of the mountain ecosystem of the Subpolar Urals. The stages of preliminary selection and processing of Landsat multispectral remote sensing data from the Google Earth Engine platform are described. The results of mapping long-term changes in forest cover and quantitative estimation of the total area of treeline transition are presented.

Aim. Mapping of long-term changes in forest cover and their quantitative estimation using Landsat multispectral remote sensing data and expert assessments of ecological zone boundaries in the mountains of the Subpolar Urals (on the example of the Sablya Ridge).

Materials and methods. Cloud-free multispectral images from Landsat satellites 4–9 of top-of-atmosphere reflectance, which underwent relative radiometric correction, as well as surface reflectance data, were used. Expert assessments of ecological zone boundaries were obtained, and regression analysis was used.

Results. Based on the statistical time series analysis for the period from 1987 to 2024, the total area of treeline transition from 1960 to 2024 was established to be 4.82 km². An acceleration of treeline transition from 1970 to 1995 was recorded.

Conclusion. The described method allows long-term spatial dynamics of treeline shifts to be mapped and quantitatively estimated. The obtained estimates agree well with those obtained by expert assessment. The recorded period of accelerated treeline transition coincides with that of global temperature changes.

About the Authors

Alexander A. Basmanov
Saint Petersburg Electrotechnical University
Russian Federation

Alexander A. Basmanov, Master's Degree in Radio Engineering, Engineer of the Department of Radio Engineering Systems,

5 F, Professor Popov St., St Petersburg 197022.



Mikhail I. Bogachev
Saint Petersburg Electrotechnical University
Russian Federation

Mikhail I. Bogachev, Dr Sci. (Eng.) (2018), Associate Professor (2011) of the Department of Radio Engineering Systems, Chief Researcher of the Scientific and Educational Center "Digital Telecommunication Technologies",

5 F, Professor Popov St., St Petersburg 197022.



Andrey A. Grigoriev
Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Andrey A. Grigoriev, Cand. Sci. (Agricultural) (2011), Senior Researcher at the Laboratory of Geoinformation Technologies,

202, 8th March St., Ekaterinburg 620144.



Yulia V. Shalaumova
Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Yulia V. Shalaumova, Cand. Sci. (Eng.) (2013), Senior Researcher at the Laboratory of Geoinformation Technologies,

202, 8th March St., Ekaterinburg 620144.



Nataliia A. Obukhova
Saint Petersburg Electrotechnical University
Russian Federation

Nataliia A. Obukhova, Dr Sci. (Eng.) (2009), Professor (2024), Dean of Faculty of Radio Engineering and Telecommunications, Head of Television and Video Equipment Department,

5 F, Professor Popov St., St Petersburg 197022.



Gregory I. Lozhkin
Kazan (Volga region) Federal University; Institute of Geography, Russian Academy of Sciences
Russian Federation

Grigory I. Lozhkin, Postgraduate Student in Ecology, Assistant of the Department of Ecosystem Modeling; Research Engineer of the Dendrochronology Laboratory,

18, Kremlevskaya St., Kazan 420008,



Denis V. Tishin
Kazan (Volga region) Federal University
Russian Federation

Denis V. Tishin, Cand. Sci. (Eng.) (2006), Associate Professor (2011) of the Department of General Ecology of the Institute of Ecology, Biotechnology and Nature Management,

18, Kremlevskaya St., Kazan 420008



References

1. Hansson A., Dargusch P., Shulmeister J. A Review of Modern Treeline Migration, the Factors Controlling It and the Implications for Carbon Storage. J. of Mountain Science. 2021, vol. 18, pp. 291–306. doi: 10.1007/s11629-020-6221-1

2. Montesano P., Frost M., Li J., Carroll M., Neigh C., Macander M., Sexton J., Frost G. A Shift in Transitional Forests of the North American Boreal Will Persist Through 2100. Communications Earth & Environment. 2024, vol. 5, no. 1, art. no. 290. doi: 10.1038/s43247-024-01454-z

3. Gorchakovskiy P. L., Shiyatov S. G. Fitoindikatsiya usloviy sredy i prirodnykh protsessov v vysokogor'yakh [Phytoindication of Environmental Conditions and Natural Processes in the Highlands]. Moscow, Nauka, 1985, 208 p. (In Russ.)

4. Harsch M. A., Hulme P. E., McGlone M. S., Duncan R. P. Are Treelines Advancing? A Global MetaAnalysis of Treeline Response to Climate Warming. Ecology Let. 2009, vol. 12, no. 10, pp. 1040–1049. doi: 10.1111/j.1461-0248.2009.01355.x

5. Banskota A., Kayastha N., Falkowski M. J., Wulder M. A., Froese R. E., White J. C. Forest Monitoring Using Landsat Time Series Data: A Review. Canadian J. of Remote Sensing. 2014, vol. 40, no. 5, pp. 362–384. doi: 10.1080/07038992.2014.987376

6. Hemati M., Hasanlou M., Mahdianpari M., Mohammadimanesh F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sensing. 2021, vol. 13, no. 15, art. no. 2869. doi: 10.3390/rs13152869

7. Kennedy R. E., Yang Z., Cohen W. B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sensing of Environment. 2010, vol. 114, no. 12, pp. 2897–2910. doi: 10.1016/j.rse.2010.07.008

8. Zhu Z., Woodcock C. E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sensing of Environment. 2014, vol. 144, pp. 152–171. doi: 10.1016/j.rse.2014.01.011

9. Huang C., Goward S. N., Masek J. G., Thomas N., Zhu Z., Vogelman J. E. An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks. Remote Sensing of Environment. 2010, vol. 114, no. 1, pp. 183–198. doi: 10.1016/j.rse.2009.08.017

10. Crawford C. J., Roy D. P., Arab S., Barnes C., Vermote E., Hulley G., Gerace A., Choate M., Engebretson C., Micijevic E., Schmidt G., Anderson C., Anderson M., Bouchard M., Cook B., Dittmeier R., Howard D., Jenkerson C., Kim M., Kleyians T., Maiersperger T., Mueller C., Neigh C., Owen L., Page B., Pahlevan N., Rengarajan R., Roger J.-C., Sayler K., Scaramuzza P., Skakun S., Yan L., Zhang H. K., Zhu Z., Zahn S. The 50-Year Landsat Collection 2 Archive. Science of Remote Sensing. 2023, vol. 8, art. no. 100103. doi: 10.1016/j.srs.2023.100103

11. Young N., Anderson R., Chignell S., Vorster A., Lawrence R., Evangelista P. A survival Guide to Landsat Preprocessing. Ecology. 2017, vol. 98, pp. 920–932. doi: 10.1002/ecy.1730

12. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment. 2017, vol. 202, pp. 18–27. doi: 10.1016/j.rse.2017.06.031

13. Schroeder T., Cohen W., Song C., Canty M., Yang Z. Radiometric Correction of Multi-Temporal Landsat Data for Characterization of Early Successional Forest Patterns in Western Oregon. Remote Sensing of Environment. 2006, vol. 103, pp. 16–26. doi: 10.1016/j.rse.2006.03.008

14. De Carvalho O. A., Guimarães R. F., Silva N. C., Gillespie A. R., Gomes R. A. T., Silva C. R., De Carvalho A. P. F. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression. Remote Sensing. 2013, vol. 5, no. 6, pp. 2763–2794. doi: 10.3390/rs5062763

15. Huang C., Song K., Kim S., Townshend J. R. G., Davis P., Masek J. G., Goward S. N. Use of a Dark Object Concept and Support Vector Machines to Automate Forest Cover Change Analysis. Remote Sensing of Environment. 2008, vol. 112, no. 3, pp. 970–985. doi: 10.1016/j.rse.2007.07.023

16. Reid P. C., Hari R. E., Beaugrand G., Livingstone D. M., Marty C., Straile D., Barichivich J., Goberville E., Adrian R., Aono Y., Brown R., Foster J., Groisman P., Hélaouët P., Hsu H.-H., Kirby R., Knight J., Kraberg A., Li J., Lo T.-T., Myneni R. B., North R. P., Pounds J. A., Sparks T., Stübi R., Tian Y., Wiltshire K. H., Xiao D., Zhu Z. Global Impacts of the 1980s Regime Shift. Global Change Biology. 2016, vol. 22, no. 2, pp. 682–703. doi: 10.1111/gcb.13106


Review

For citations:


Basmanov A.A., Bogachev M.I., Grigoriev A.A., Shalaumova Yu.V., Obukhova N.A., Lozhkin G.I., Tishin D.V. Mapping Long-Term Changes in Forest Cover Using Multispectral Satellite Remote Sensing Data. Journal of the Russian Universities. Radioelectronics. 2025;28(5):16-27. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-5-16-27

Views: 147


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)