Spatial Correlation Function of Signals in Radio Engineering Systems with Phased Antenna Arrays
https://doi.org/10.32603/1993-8985-2025-28-3-85-94
Abstract
Aim. To determine the dimensions of the high correlation region by studying the shape of a volumetric image of the module of the spatial correlation function, depending on the direction of arrival of the signal of interest.
Materials and methods. The uncertainty function of the space–time signal was investigated using statistical simulation methods. Calculations were performed in the Mathcad 15 software package.
Results. A volumetric image of the ambiguity function module of a space–time signal is constructed. The minimum and maximum values of the width of the high correlation region are determined by angular coordinates, which directly affect the accuracy of direction finding of the repeater satellite using a graphical method. At an elevation angle equal to zero, the minimum value of the width of the correlation function is obtained, equal to θкор = θкор min = 7° and the maximum uncertainty in relation to the true value of the azimuth. At the boundary of the scanning area of the radiation pattern θ0 = 60°, we obtain θкор max = 12°, in this case, the parameter Aкор min = 7°. The analytical method allowed us to obtain: Aкор min » 6° at θ0 = 60°; A0 = 90, 270° and θкор min » 5° at θ0 = 0°; A0 = 0,180, 360°.
Conclusion. The results obtained can be used when developing mobile space communication systems with phased antenna arrays. Further research directions include the development of conformal phased antenna arrays with a controllable directional diagram.
About the Author
M. R. BibarsovRussian Federation
Marat R. Bibarsov, Cand. Sci. (Eng.) (1999), Associate Professor (2007), Senior Lecturer of the Radio Communications Department; Associate Professor of the Department of Radioengineering and Optoelectronic Complexes
The author of 205 scientific publications. Area of expertise: information transmission and reception systems; adаptive antenna systems.
3, Tikhoretsky Ave., St Petersburg 194064
References
1. Voskresensky D. I., Gostyukhin V. L., Maksimov V. M., Ponomarev L. I. Ustrojstva SVCh i antenny [Microwave Devices and Antennas]. Ed. by D. I. Voskresensky. 2nd ed. Moscow, Radiotehnika, 2006, 376 p. (In Russ.)
2. Hansen R. S. Phased Antenna Arrays. 2nd ed. New Jersey, John Willey & Sons, 2009, 551 p.
3. Balanis C. A. Antenna Theory: Analysis and Design. 3rd ed. New Jersey, John Willey & Sons, 2005, 1136 p.
4. Milligan T. A. Modern Antenna Design. New Jersey, John Wiley & Sons, 2005, 630 p.
5. Levin B. Antenna Engineering Theory and Problems. Boca Raton, CRC Press, 2017, 406 p.
6. Elliott R. S. Antenna Theory & Design. WileyIEEE Press, 2003, 612 p.
7. Ponomarev L. I., Stepanenko V. I. Skaniruyushchie mnogochastotnye sovmeshchennye antennye reshetki [Scanning Multi-Frequency Combined Antenna Arrays]. Moscow, Radio engineering, 2009, 328 p. (In Russ.)
8. Vendik O. G. Parnes M. D. [Antenny s elektricheskim skanirovaniem] Antennas with Electrical Scanning. Moscow, Science Press, 2001, 232 p. (In Russ.)
9. Proakis J. Digital Communication. New York, McGraw-Hill, 2000, 905 p.
10. Sklar B. Digital Communications: Fundamentals and Applications. New Jersey, Prentice Hall, 2001, 1079 p.
11. Dvornikov S. V., Pshenichnikov A. V., Kryachko A. F., Bibarsov M. R., Bibarsova G. Sh. Theoretical Proposals for Improving the Noise Immunity of Receiving Multi-Position Signals in Channels with Variable Parameters. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 2, pp. 6–15. (In Russ.) doi: 10.32603/1993-8985-2023-26-2-6-15
12. Bibarsov M. R., Dvornikov S. V., Kryachko A. F., Pshenichnikov A. V. Scientific and Technical Proposals for Improving the Noise Immunity of Receiving MultiPosition Signals in Channels with Variable Parameters. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 2, pp. 6–15. (In Russ.) doi: 10.32603/1993-8985-2023-26-6-6-15
13. Grigoriev L. N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannyh antennyh reshetkah [Digital Beamforming in Phased Antenna Arrays]. Moscow, Radiotehnika, 2010, 144 p. (In Russ.)
14. Tyapichev G. Sputniki i tsifrovaya radiosvyaz' [Satellites and Digital Radio Communications]. Moscow, TekhBook, 2004, 288 p. (In Russ.)
15. Bibarsov M. R., Neveikin M. E. Algoritm optimizatsii upravleniya diagrammoi napravlennosti fazirovannoi antennoi reshetki [Algorithm for Optimization of Control of the Radiation Pattern of a Phased Antenna Array]. In the book: Mathematical methods and models in high-tech production. Collection of abstracts of reports of the IV Intern. Forum. In 2 parts. St Petersburg, Saint Petersburg State University of Aerospace Instrumentation, 2024, pp. 351–352. (In Russ.)
16. Bibarsov M. R. Analiz funktsionirovaniya tsifrovoi fazirovannoi antennoi reshetki pri sokrashchenii kolichestva kanalov adaptatsii [Analysis of the Functioning of a Digital Phased Antenna Array with a Reduction in the Number of Adaptation Channels]. In: Wave Electronics and Infocommunication Systems. Proc. of the XXVII Intern. Scientific Conf. St Petersburg, Saint Petersburg State University of Aerospace Instrumentation, 2024, pp. 31–34. (In Russ.)
17. Bibarsov M. R. Obosnovanie primeneniya adaptivnykh antennykh reshetok v sisteme upravleniya letatel'nymi apparatami [Justification for the Use of Adaptive Antenna Arrays in the Aircraft Control System]. In: Metrological support of innovative technologies. Collection of articles of the VI Intern. Forum. St Petersburg, Saint Petersburg State University of Aerospace Instrumentation, 2024, pp. 52–53. (In Russ.)
18. Falkovich S. E. Otsenka parametrov signalov [Estimation of Signal Parameters]. Moscow, Sov. Radio, 1970, 336 p. (In Russ.)
19. Bibarsov M. R., Gribanov E. V., Gabrielyan D. D., Fedorov Den. S., Fedorov Dan. S. Synthesis of Amplitude-Phase Distribution in Quasiconcave an Antenna Array. J. of the Russian Universities. Radioelectronics. 2017, iss. 2. pp. 28–33. (In Russ.)
20. Bibarsov M. R., Bibarsova G. Sh., Gabriel’ean D. D., Dvornikov S. V., Fedorov D. S. Effect of Locally Flat Distortions in the Radiating Aperture on the Radiation Pattern of a Phased Antenna Array. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 1, pp. 17–25. (In Russ.) doi: 10.32603/1993-8985-2023-26-1-17-25
21. Bibarsov M. R., Bibarsova G. Sh., Gabrielyan D. D. Shatsky V. N. Influence of Errors in the Formation of the Amplitude-Phase Distribution in the Aperture of a Phased Array Antenna on the Accuracy of Direction Finding. Information and Space. 2023, no. 2, pp. 18– 23.
22. Bibarsov M. R. Research into the Impact of Phase Shifter Failures on the Characteristics of Slotted Waveguide Array Antenna. J. of the Russian Universities. Radioelectronics. 2024, vol. 27, no. 1. pp. 57–66. (In Russ.) doi: 10.32603/1993-8985-2024-27-1-57-66
23. Kryachko A. F., Gladkiy N. A., Bibarsov M. R., Ayukov B. A. Algorithm for Assessing the Characteristics of a Waveguide Slot Antenna Array when Changing Antenna Element Phasing. J. of the Russian Universities. Radioelectronics. 2024, vol. 27, no. 3, pp. 42–51. (In Russ.) doi: 10.32603/1993-8985-2024-27-3-42-51
24. Kryachko A. F., Bibarsov M. R., Ayukov B. A. Algorithm for Modeling Changes in the Characteristics of a Waveguide-Slot Antenna Array in Case of Phase Shifter Failures. Proc. of the Intern. Symp. "Reliability and Quality", Penza, 27 May – 1 June 2024. Penza State University, 2024, vol. 2, pp. 472–474. (In Russ.)
Review
For citations:
Bibarsov M.R. Spatial Correlation Function of Signals in Radio Engineering Systems with Phased Antenna Arrays. Journal of the Russian Universities. Radioelectronics. 2025;28(3):85-94. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-3-85-94