Wideband Reflectarray Antennas in the Microwave Range
https://doi.org/10.32603/1993-8985-2025-28-3-42-56
Abstract
Introduction. The development of broadband reflectarray antennas for the microwave band remains a key challenge in the context of stricter requirements imposed on telecommunications systems, including 5G/6G networks and satellite communications. Despite a significant number of studies devoted to methods of extending the operating frequency band, it is of interest to analyze data from experimental studies of the developed reflectarrays, confirming the effectiveness of the considered approaches.
Aim. Generalization of the design approaches used to extend the operating frequency band of reflectarrays. The main attention is paid to the experimental verification of the considered approaches, i.e., the use of multilayer structures and spatial diversity and geometric optimization of elements, with the purpose of clarifying their practical applicability.
Materials and methods. An analysis of existing techniques (numerical modeling of FI, FM, electrodynamic calculation based on a Floquet cell) and the results of original experimental research in this field was conducted. Measurements were carried out on printed, all-metal, and conformal reflectarrays using an Antast B3-1 near-field scanner and an Agilent N5230A PNA-L vector circuit analyzer. The phase error minimization algorithms were adapted to work in the extended frequency range.
Results. The study experimentally confirmed the extension of the operating frequency band in terms of the 3 dB criterion from the maximum value of the gain to 40 % for multilayer printed circuit boards and 19.6 % for corner structures. Optimization of the geometry of the elements based on dumbbell cross-shaped structures provides a relative band of 28 % with a decrease in gain by 0.5 dB. All-metal slit tubes demonstrate resistance to extreme conditions, although requiring consideration of the possibility of excitation of plane-parallel waveguide modes at the design stage, which have a significant impact on their characteristics.
Conclusion. Recommendations on the choice of geometry, design, and manufacturing technology of various reflectarrays based on the experience of theoretical and experimental research conducted at the Department of Theoretical Foundations of Radio Engineering of Saint Petersburg Electrotechnical University in 2010–2025 are presented. These data form the basis for designing antenna arrays that meet the requirements of high-speed telecommunications systems and indicate areas for further research, including miniaturization and increased structural stability.
About the Authors
L. М. LiubinaRussian Federation
Liubov M. Liubina, Cand. Sci. (Eng.) (2020), Associate Professor of the Department of Theoretical Fundamentals of Radio Engineering
The author of more than 30 scientific publications. Area of expertise: electrodynamics and antenna-feeder devices.
A5 F, Professor Popov St., St Petersburg 197022
S. V. Ballandovich
Russian Federation
Svyatoslav V. Ballandovich, Cand. Sci. (Eng.) (2015), Associate Professor (2021), Associate of the Department of Theoretical Fundamentals of Radio Engineering
The author of more than 30 scientific publications. Area of expertise: electrodynamics and antenna-feeder devices.
5 F, Professor Popov St., St Petersburg 197022
G. A. Kostikov
Russian Federation
Grigory A. Kostikov, Cand. Sci. (Eng.) (2007), Associate Professor (2014), Associate Professor of the Department of Theoretical Fundamentals of Radio Engineering
The author of more than 40 scientific publications. Area of expertise: electrodynamics and antenna-feeder devices.
5 F, Professor Popov St., St Petersburg 197022
Yu. G. Antonov
Russian Federation
Yuriy G. Antonov, Cand. Sci. (Eng.) (2007), Associate Professor (2012), Associate Professor of the Department of Theoretical Fundamentals of Radio Engineering
The author of more than 40 scientific publications. Area of expertise: electrodynamics and antenna-feeder devices.
5 F, Professor Popov St., St Petersburg 197022
References
1. Olwal T. O., Chuku P. N., Lysko A. A. Antenna Research Directions for 6G: A Brief Overview through Sampling Literature. 7th Intern. Conf. on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021. IEEE, 2021, pp. 1582–1587. doi: 10.1109/ICACCS51430.2021.9441781
2. Chakrabarti S., Singh V. K., Kumar A., Thomas K. G., Rao P. H. High Gain Elliptic Lens Antenna at D-Band for 6G Multi Gbps Data Transmission. IEEE Intern. Symp. on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INCUSNC-URSI), Firenze, Italy, 14–19 July 2024. IEEE, 2024, pp. 887–888. doi: 10.1109/AP-S/INC-USNC-URSI52054.2024.10686215
3. Dahri M. H., Jamaluddin M. H., Abbasi M. I., Kamarudin M. R. A Review of Wideband Reflectarray Antennas for 5G Communication Systems. IEEE Access. 2017, vol. 5, pp. 17803–17815. doi: 10.1109/ACCESS.2017.2747844
4. Polenga S. V., Ryazantsev R. O., Salomatov Yu. P., Panko V. S., Sugak M. I. Reflectarray and Transmitarray Development Experience. J. of Siberian Federal University. Engineering & Technologies. 2011, vol. 4, no. 1, pp. 40–50. (In Russ.)
5. Balanis C. A. Antenna Theory: Analysis and Design. New Jersey, John Wiley & Sons, 2016, 1104 p.
6. Elliott R. S. Antenna Theory and Design. New Jersey, John Wiley & Sons, 2003, 625 p.
7. Yu N., Genevet P., Kats M. A., Aieta F., Tetienne J.-P., Capasso F., Gaburro Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. 2011, vol. 334, pp. 333–337. doi: 10.1126/science.1210713
8. Polenga S. V., Stankovsky A. V., Krylov R. M., Nemshon A. D., Litinskaya Yu. A., Salomatov Yu. P. Millimeter-Wave Waveguide Reflectarray. Intern. Siberian Conf. on Control and Communications (SIBCON), Omsk, Russia, 21–23 May 2015. IEEE, 2015, pp. 1–4. doi: 10.1109/SIBCON.2015.7147335
9. Zhang Zh., Liu T., Cao X., Yang H., Jidi L., Gao Ju. An Integrated 2‐Bit Metasurface Array Antenna with Broadband Lowradar Cross‐Section Covering Large Incident Angle Space. IET Microwaves, Antennas & Propagation. 2022, vol. 16, no. 6, pp. 367–377. doi: 10.1049/mia2.12251
10. Sing S. L., Huang S., Goh G. D., Goh G. L., Tey C. F., Tan J. H. K., Yeong W. Y. Emerging Metallic Systems for Additive Manufacturing : In-Situ Alloying and Multi-Metal Processing in Laser Powder Bed Fusion. Progress in Materials Science. 2021, vol. 119, art. no. 100795. doi: 10.1016/J.PMATSCI.2021.100795
11. Cui C., Li W. T., Ye X. T., Hei Y. Q., Rocca P., Shi X. W. Synthesis of Mask-Constrained PatternReconfigurable Nonuniformly Spaced Linear Arrays Using Artificial Neural Networks. IEEE Transactions on Antennas and Propagation. 2022, vol. 70, no. 6, pp. 4355–4368. doi: 10.1109/TAP.2022.3140214
12. Qin T., Wen S., Lin X. Q., Cao Y., Cai Y., Mei P. A Novel Metasurface Inverse Design Based on Back Propagation Neural Network. 18th European Conf. on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 17–22 March 2024. IEEE, 2024, pp. 1–5. doi: 10.23919/EuCAP60739.2024.10501758
13. Obukhovets V. A., Kasyanov A. O. Mikropoloskovye otrazhatel'nye antennye reshetki. Metody proektirovanija i chislennoe modelirovanie [Microstrip Reflective Antenna Arrays. Design Methods and Numerical Modeling]. Moscow, Radiotehnika, 2006, 240 p. (In Russ.)
14. Yang W., Li J., Chen D., Cao Y., Xue Q., Che W. Advanced Metasurface-Based Antennas: A Review. IEEE Open J. of Antennas and Propagation. 2025, vol. 6, no. 1, pp. 6–24. doi: 10.1109/OJAP.2024.3465513
15. Kai X., Li F., Feng J., Xu S. Single-Layer Four-Band, Dual Linear Polarization Reflective Metasurface. 6th Intern. Conf. on Information Communication and Signal Processing (ICICSP), Xi'an, China, 23–25 Sept. 2023. IEEE, 2023, pp. 805–809. doi: 10.1109/ICICSP59554.2023.10390627
16. Ballandovich S. V. Designing Dual-Frequency Printed Reflective Antenna Arrays Using a Modified Floquet Cell. J. of the Russian Universities. Radioelectronics. 2015, no. 1, pp. 17–20. (In Russ.)
17. Chaharmir M. R., Shaker J., Legay H. Broadband Design of a Single Layer Large Reflectarray Using Multi Cross Loop Elements. IEEE Trans. Antennas Propag. 2009, vol. 57, no. 10, pp. 3363–3366. doi: 10.1109/TAP.2009.2029600
18. Sugak M. I., Ballandovich S. V., Kostikov G. A., Liubina L. M., Antonov Yu. G. Increasing Bandwidth of Full-Metal Slot Reflectarray Antennas. ITM Web Conf. 2019, vol. 30, art. no. 05023. doi: 10.1051/itmconf/20193005023
19. Ballandovich S. V., Liubina L. M., Kostikov G. A., Antonov Yu. G. MM-Band Reflectarray with Extended Bandwidth. Seminar on Fields, Waves, Photonics and Electro-optics: Theory and Practical Applications (FWPE), Saint Petersburg, Russia, 21 Nov. 2023. IEEE, 2023, pp. 4–7. doi: 10.1109/FWPE60445.2023.10368549
20. Luo Qi, Gao S., Zhang Ch., Zhou D., Chaloun T., Menzel W. Design and Analysis of a Reflectarray Using Slot Antenna Elements for Ka-band SatCom. IEEE Transactions on Antennas and Propagation. 2015, vol. 63, no. 4, pp. 1365–1374. doi: 10.1109/TAP.2015.2401393
21. Bhattacharyya A., Fordham O., Liu Ya. Analysis of Stripline-Fed Slot-Coupled Patch Antennas with Vias for Parallel-Plate Mode Suppression. IEEE Transactions on Antennas and Propagation. 1998, vol. 46, no. 4, pp. 538–545. doi: 10.1109/8.664118
22. Ballandovich S. V., Sugak M. I., Kostikov G. A., Liubina L. M., Antonov Yu. G. Parallel-Plate Modes in Slot Reflectarray Antennas. IEEE Transactions on Antennas and Propagation. 2021, vol. 69, no. 6, pp. 3303–3311.
23. Antonov Yu. G., Ballandovich S. V., Kostikov G. A., Sugak M. I. Characteristics of Planar Reflectarrays Designed by a Method of Composite Panel Milling. Antennas. 2010, no. 10 (161), pp. 5–10. (In Russ.)
Review
For citations:
Liubina L.М., Ballandovich S.V., Kostikov G.A., Antonov Yu.G. Wideband Reflectarray Antennas in the Microwave Range. Journal of the Russian Universities. Radioelectronics. 2025;28(3):42-56. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-3-42-56