Estimation of Observer Metameric Failure when Using Modern Displays
https://doi.org/10.32603/1993-8985-2025-28-3-24-41
Abstract
Introduction. The advent of wide-gamut color reproduction devices (LED, laser, or OLED) has exacerbated the problem of color rendering related to individual differences in color perception and referred to as observer metameric failure. Currently, designers of smartphone and TV displays, as well as other playback devices, are aiming to reach a wider gamut; however, there is a lack of device-specific methodologies for assessing the degree of observer metameric failure.
Aim. To develop a method for estimating the degree of observer metameric failure. This method can be used to assess the need for a color correction of a particular device in order to compensate for the color rendering problem.
Materials and methods. Categorical observers, formed by clustering of color matching functions of individual users, were used. The procedure of searching for pairs of colors that would be indistinguishable for one categorical observer, but would look different for another, i.e., would cause an observer metameric failure, was developed based on the solution of an optimization problem. The decision on the need to implement a color correction for the designed device is made based on the degree of errors on the found pairs of colors for a set of categorical observers.
Results. It was shown that modern displays are already associated with the effect of observer metameric failure. Further development of display technologies and an extension of color coverage due to narrowing of spectral characteristics of basic colors will make the problem of observer metameric failure more pronounced, thus requiring special measures of color correction.
Conclusion. A method for estimating the degree of observer metameric failure for a particular color reproduction device is proposed. This method can be used to assess the need for implementing color correction measures to compensate for the problem of color rendering by individual users.
About the Authors
A. A. MotykoRussian Federation
Alexander A. Motyko, Cand. Sci. (Eng.) (2012), Associate Professor (2019), Senior Researcher of the Laboratory "Probabilistic Methods in Analysis" of Faculty of Mathematics and Computer Science; Associate Professor of Television and Video Engineering
The author of more than 80 scientific publications. Area of expertise: computer vision; colorimetry; deep learning.
5 F, Professor Popov St., St Petersburg 197022
N. A. Obukhova
Russian Federation
Natalia A. Obukhova, Dr Sci. in Engineering (2009), Dean of the Faculty of Radio Engineering and Telecommuni- cations, Head of the Department of Television and Video Engineering
The author of more than 130 scientific publications. Area of expertise: computer vision and video analytics; machine learning and digital image processing; video systems and decision support systems; smart imaging technologies.
5 F, Professor Popov St., St Petersburg 197022
K. A. Smirnov
Russian Federation
Konstantin A. Smirnov – Master's degree in Radio Engineering (2022), Postgraduate student of Television and Video Engineering; Researcher of the Laboratory of Probabilistic Methods in Analysis of Faculty of Mathematics and Computer Science
The author of 5 scientific publications. Area of expertise: computer vision; colourimetry.
5 F, Professor Popov St., St Petersburg 197022
References
1. Stockman A. Cone fundamentals and CIE standards // Current Opinion in Behavioral Sciences. 2019. Vol. 30. P. 87–93. doi: 10.1016/j.cobeha.2019.06.005
2. Vos J. J. Colorimetric and photometric properties of a 2° fundamental observer // Color Research and Application. 1978. Vol. 3. P. 125–128. doi: 10.1002/col.5080030309
3. Stiles W. S., Burch J. M. NPL colour-matching investigation: Final report // Optica Acta. 1959. Vol. 6, iss. 1. P. 1–26. doi: 10.1080/713826267
4. Mapping Quantitative Observer Metamerism of Displays / G. Trumpy, C. F. Andersen, I. Farup, O. Elezabi // J. of Imaging. 2023. Vol. 9, № 10. Art. № 227. doi: 10.3390/jimaging9100227
5. Stockman A., Sharpe L. T. The spectral sensitivities of the middleand long-wavelengthsensitive cones derived from measurements in observers of known genotype // Vision Research. 2000. Vol. 40, iss. 13. P. 1711–1737. doi: 10.1016/S0042-6989(00)00021-3
6. Measuring and modeling display observer metamerism / Ch. Shen, R. Wanat, J. Yoo, J. Jang, M. Fairchild // The Visual Computer. 2022. Vol. 38. P. 3301–3310. doi: 10.1007/s00371-022-02546-7
7. Ramanath R. Minimizing observer metamerism in display systems // Color Res. Appl. 2009. Vol. 34, iss. 5. P. 391–398. doi: 10.1002/col.20523
8. Hu Y., Wei M., Luo M. R. Observer metamerism to display white point using different primary sets // Optics Express. 2020. Vol. 28, iss. 14. P. 20305–20323. doi: 10.1364/OE.395568
9. Long D. L., Fairchild M. D. Observer metamerism models and multiprimary display systems // SMPTE Motion Imaging J. 2016. Vol. 125, iss. 3. P. 18–29. doi: 10.5594/JMI.2016.252740178-1: Correcting Metameric Failure of Wide Color Gamut Displays / B. Bodner, N. Robinson, R. Atkins, S. Daly // SID Symp. Digest of Technical Papers. 2018. Vol. 49, iss. 1. P. 1040–1043. doi: 10.1002/sdtp.12190
10. Bai C. Y. H., Ou L. C. Observer variability study and method to implement observer categories for novel light source projection system // Color Res. Appl. 2021. Vol. 46, iss. 5. P. 1019–1033. doi: 10.1002/col.22634
11. Reducing the CIE colorimetric matching failure on wide color gamut displays / M. Ko, Y. Kwak, G. Seo, J. Kim, Y. Moon // Opt. Express. 2023. Vol. 31, iss. 4. P. 5670–5686. doi: 10.1364/OE.480001
12. A device and method for color contrast enhancement based on human color vision features / N. A. Obukhova, A. A. Motyko, A. A. Pozdeev, E. V. Vorobyev, M. K. Tchobanou // Patent WO, № 2023172154A1, 2023.
13. Special Metamerism Index: Change in Observer. Technical Report 80. Vienna, Austria: CIE Central Bureau, 1989.
14. Sarkar A. CIE Special Metamerism Index: Change in Observer // Encyclopedia of Color Science and Technology / Ed. by R. Luo. Berlin/Heidelberg: Springer, 2015. P. 1–9. doi: 10.1007/978-3-642-27851-8_322-1
15. Fairchild M. D., Heckaman R. L. Metameric Observers: A Monte Carlo Approach // Proc. of the 21st Color and Imaging Conf. 2013. Vol. 21. P. 185–190. doi: 10.2352/CIC.2013.21.1.art00033
16. Asano Y. Individual Colorimetric Observers for Personalized Color Imaging. Ph.D. Thesis, Rochester Institute of Technology. NY, USA, Rochester, 2015.
17. Long D. L., Fairchild M. D. Modeling Observer Variability and Metamerism Failure in Electronic Color Displays // J. of Imaging Science and Technology. 2014. Vol. 58. P. 030402-1–030402-14. doi: 10.2352/J.ImagingSci.Technol.2014.58.3.030402
18. Xie H., Farnand S. P., Murdoch M. J. Observer metamerism in commercial displays // J. of the Optical Society of America A. 2020. Vol. 37, iss. 4. P. 61–69. doi: 10.1364/JOSAA.382228
19. Sharma G., Wu W., Dalal E. N. The CIEDE2000 Color-Difference Formula: Implementation Notes, Formula Specification and Examples // Color Research and Application. 2005. Vol. 30, iss. 1. P. 21–30. doi: 10.1002/col.20070
20. Kim A., Kim H., Park S. Measuring of the Perceptibility and Acceptability in Various Color Quality Measures // J. of the Optical Society of Korea. 2011. Vol. 15, iss. 3. P. 310–317. doi: 10.3807/JOSK.2011.15.3.310
21. Sarkar A. Identification and Assignment of Colorimetric Observer Categories and Their Applications in Color and Vision Sciences. Ph.D. Thesis, Université de Nantes, 2011.
22. Ketchen D. J., Shook C. L. The application of cluster analysis in strategic management research: an analysis and critique // Strategic Management J. 1996. Vol. 17. P. 441–458. doi: 10.1002/(SICI)1097-0266(199606)17:6%3C441::AIDSMJ819%3E3.0.CO;2-G
23. Mathematical Discontinuities in CIEDE2000 Color Difference Computations / G. Sharma, W. Wu, E. Dalal, U. M. Celik // The 12th Color Imaging Conf.
24. Color Science and Engineering Systems, Technologies, Applications, Scottsdale, Arizona, USA, 9 Nov. 2004. P. 334–339.
25. Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules / B. Olson, I. Hashmi, K. Molloy, A. Shehu // Advances in Artificial Intelligence. 2012. Vol. 2012, iss. 1. Art. № 674832. doi: 10.1155/2012/674832
Review
For citations:
Motyko A.A., Obukhova N.A., Smirnov K.A. Estimation of Observer Metameric Failure when Using Modern Displays. Journal of the Russian Universities. Radioelectronics. 2025;28(3):24-41. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-3-24-41