Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

Optimization and Fabrication of Heterojunction Silicon Solar Cells Using an Experimental-Industrial Facility AK-1000 Inline

https://doi.org/10.32603/1993-8985-2020-23-5-57-62

Аннотация

Introduction. Heterojunction silicon solar cells represent one of the most promising directions for the development of solar photovoltaics. This is due to both their high power conversion efficiency and reasonable likelihood for further growth in performance, as well as good commercial potential of this technology, which relies on a transition from conventional diffusion-based processes to thin film deposition.

Aim. The paper describes results of optimization and fabrication of heterojunction silicon solar cells using the AK-1000 inline tool, adapted for processing of 6-inch wafers.

Materials and methods. In the manufacturing of solar cells, crystalline silicon wafers were subjected to wet chemical processes, and then electron, hole, and intrinsic types of conductivity of the layers based on amorphous silicon were deposited by plasma-chemical deposition. Precipitation of oxide transparent conductive layers was carried out by magnetron sputtering. To optimize the processes of obtaining solar cells, measurements of the reflection coefficient, of lifetime of minority carriers, and of current – voltage characteristics were used.

Results. As a result of the work, heterojunction solar cells were obtained in a laboratory in Kazakhstan with an efficiency of 20% without using of traditional diffusion processes for solar cells manufacturing.

Conclusions. The output parameters associated with light conversion efficiency demonstrate the possibility of further optimization of the parameters affecting the performance of heterojunction solar cells.

Об авторах

N. А. Chuchvaga
Satbayev University, Institute of Physics and Technology, LLP; Scientific-Production Center of Agricultural Engineering, LLP
Казахстан
Nikolay A. Chuchvaga, PhD (2019), Senior Researcher; Senior lecturer at al-Farabi Kazakh National University and the Kazakh-German University. From 2010 to 2014, he was an employee, and also wrote bachelor's and master's theses at the P.I. Ioffe RAS. He completed his PhD thesis at the P.I. Ioffe RAS (Russia) and IPT LLP (Kazakhstan). 11 Ibragimov St., 050032, Almaty, Kazakhstan


J. Schulze
Meyer Burger (Germany) AG
Германия
Julius Schulze, Master of science, Technologist, An der Baumschule 6-8, 09337 Hohenstein-Ernstthal, Germany


V. V. Klimenov
Satbayev University, Institute of Physics and Technology, LLP; Scientific-Production Center of Agricultural Engineering, LLP; RDC SiTech, LLP
Казахстан
Vassiliy V. Klimenov, Chief Technologist, postgraduate studies - "Solid State and Condensed Matter Physics" Physics and Technology Institute 2006-2009, 11 Ibragimov St., 050032, Almaty, Kazakhstan


К. S. Zholdybayev
Satbayev University, Institute of Physics and Technology, LLP
Казахстан
Kairat S. Zholdybayev, Junior Researcher. Education: Master (Kazakh National University named after Al-Farabi, 2016, specialty - Nuclear Physic). After graduating from the master degree in 2016, he is engaged in research in the field of research of heterojunction silicon and perovskite solar cells at the Laboratory of Photoelectric Phenomena and Devices (LPNP). On this topic, he is preparing a thesis for the degree of Doctor of Philosophy PhD. 11 Ibragimov St., 050032, Almaty, Kazakhstan


К. P. Aimaganbetov
Satbayev University, Institute of Physics and Technology, LLP; Scientific-Production Center of Agricultural Engineering, LLP
Казахстан
Kazybek P. Aimaganbetov, Researcher. Master 2017 (Technical Physics, KazNRTU named after Satpayev). At the moment he is studying under the PhD program. 11 Ibragimov St., 050032, Almaty, Kazakhstan


S. R. Zhantuarov
Satbayev University, Institute of Physics and Technology, LLP
Казахстан
Sultan R. Zhantuarov, Junior Researcher. Education: Master (National Research Tomsk Polytechnic University, 2014, specialty - 011200, «Physics»). After graduating from master’s degree in 2014, he is engaged in research in the field of research of perovskite solar cells at the Laboratory of Photoelectric Phenomena and Devices. On this topic, he is preparing a PhD thesis. 11 Ibragimov St., 050032, Almaty, Kazakhstan


А. S. Serikkanov
Satbayev University, Institute of Physics and Technology, LLP
Казахстан
Abay S. Serikkanov, Director of FTI LLP. Candidate of Physical and Mathematical Sciences, Chief Researcher, 11 Ibragimov St., 050032, Almaty, Kazakhstan


E. I. Terukov
A.F. Ioffe Physical-Technical Institute; R&D Center for Thin-Film Technologies in Energetics at A.F. Ioffe Physical-Technical Institute
Россия
Eugeny I. Terukov, Dr. Sci. (Eng.) in Technical Sciences in the specialty of "Semiconductors and Dielectrics" (1996), Professor, Head of laboratory, 26 Polytechnicheskaya St., 194021, St Petersburg, Russia


S. Zh. Tokmoldin
Scientific-Production Center of Agricultural Engineering, LLP; RDC SiTech, LLP
Казахстан
Serekbol Zh. Tokmoldin, Dr. Sci. (Physics and Mathematics), Chief Researcher, Director of Silica Metals LLP and RDC SiTech LLP, 312 Raiymbek Ave., 050005, Almaty, Kazakhstan


N. S. Tokmoldin
Satbayev University, Institute of Physics and Technology, LLP; University of Potsdam
Казахстан
Nurlan S. Tokmoldin, PhD in Organic Electronics (2011), at the time of preparing the manuscript Head of Laboratory of Photovoltaic Phenomena and Devices. Currently, post-doctoral researcher at the University of Potsdam, Germany. 11 Ibragimov St., 050032, Almaty, Kazakhstan


Список литературы

1. Battaglia C., Cuevas A., De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 2016, vol. 9, iss. 5, pp. 1552-76. doi: 10.1039/C5EE03380B

2. Andreani L. C., Bozzola A., Kowalczewski P., Liscidini M., Redorici L. Silicon solar cells: toward the efficiency limits. Advances in Physics: X. 2019, vol. 4, iss. 1, p. 1548305. doi: 10.1080/23746149.2018.1548305

3. Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26 %. Nature Energy. J. Art. 2017, vol. 2, iss. 5. doi: 10.1038/nenergy.2017.32

4. Haschke J., Dupré O., Boccard M., Ballif C. Silicon heterojunction solar cells: Recent technological development and practical aspects-from lab to industry. Sol. Energy Mater Sol. Cells. 2018, vol. 187, pp. 140-53. doi: 10.1016/j.solmat.2018.07.018

5. Liu Y., Li Y., Wu Y., Yang G., Mazzarella L., Procel-Moya P., Tamboli A. C., Weber K., Boccard M., Isabella O., Yang X. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Mater. Sci. Eng. R Rep. 2020, vol. 142, p. 100579. doi: 10.1016/j.mser.2020.100579

6. Terukov E., Kosarev A., Abramov A., Malchukova E. From 11 % Thin Film to 23 % Heterojunction Technology (HJT) PV Cell: Research, Development and Implementation Related 1600 × 1000 mm PV Modules in Industrial Production. Book Chapter in: Zaidi B. (ed) Solar Panels and Photovoltaic Materials. 2018. doi: 10.5772/intechopen.75013

7. Abramov A. S., Andronikov D. A., Abolmasov S. N., Terukov E. I. Silicon Heterojunction Technology: A Key to High Efficiency Solar Cells at Low Cost. Book Chapter in: Petrova-Koch V., Hezel R., Goetzberger A. (eds) High-Efficient Low-Cost Photovoltaics. Springer Series in Optical Sciences. 2020, vol. 140, pp. 113–132. Springer, Cham. doi: 10.1007/978-3-030-22864-4_7

8. Pankove J. I., Tarng M. L. Amorphous silicon as a passivant for crystalline silicon. Applied Physics Lett. 1979, vol. 34, iss. 2, pp. 156-157. doi: 10.1063/1.90711

9. Herasimenka S. Y. Large area ultrapassivated silicon solar cells using heterojunction carrier collectors.Doctoral Dis. Arizona State University. USA, 2013, 233 p.

10. De Wolf S., Descoeudres A., Holman Z. C., Ballif C. High-efficiency Silicon Heterojunction Solar Cells: A Review. 2012, vol. 2, iss. 1, pp. 7–24. doi: 10.1515/green-2011-0018

11. Han Y., Yu X., Wang D., & Yang D. Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells. J. of Nanomaterials. 2013, vol. 2013, pp. 1-5. doi: 10.1155/2013/716012

12. Chuchvaga N. A., Kislyakova N. M., Tokmoldin N. S., Rakymbetov B. A., Serikkanov A. S. Problemy pri ispol'zovanii travitelya KOH-IPA dlya teksturirovaniya kremnievyh plastin [Problems when using KOH-IPA Etchant for silicon wafer texturing]. Technical Physics Journal. 2020, vol. 90, iss. 10, pp. 1758-1763. doi: 10.21883/JTF.2020.10.49810.431-19 (In Russ.)

13. Yao Y., Xiao S., Zhang X., Gu X. Simulation optimizing of n-type HIT solar cells with AFORS-HET. J. Modern Physics Letters B. 2017, vol. 31, iss. 19-21, 1740025 p. doi: 10.1142/S0217984917400255

14. Keshuov S., Tokmoldin N., Chuchvaga N., Tokmoldin S., Isova A. An algorithm for optimization of heterojunction silicon solar cells by ranking of fabrication parameters influencing their efficiency. J. Ekoloji. 2019, vol. 28, iss. 108, pp. 2681–2692.

15. Chuchvaga N. A., Zhilina D. V., Zhantuarov S. R., Tokmoldin S. Zh., Terukov E. I., Tokmoldin N. S. Study and optimization of heterojunction silicon solar cells. J. Phys. Conf. Series. Mar. 2018, vol. 993, pp. 1-7. doi: 10.1088/1742-6596/993/1/012039


Рецензия

Для цитирования:


Chuchvaga N.А., Schulze J., Klimenov V.V., Zholdybayev К.S., Aimaganbetov К.P., Zhantuarov S.R., Serikkanov А.S., Terukov E.I., Tokmoldin S.Zh., Tokmoldin N.S. Optimization and Fabrication of Heterojunction Silicon Solar Cells Using an Experimental-Industrial Facility AK-1000 Inline. Известия высших учебных заведений России. Радиоэлектроника. 2020;23(5):57-62. https://doi.org/10.32603/1993-8985-2020-23-5-57-62

For citation:


Chuchvaga N.A., Schulze J., Klimenov V.V., Zholdybayev K.S., Aimaganbetov K.P., Zhantuarov S.R., Serikkanov A.S., Terukov E.I., Tokmoldin S.Zh., Tokmoldin N.S. Optimization and Fabrication of Heterojunction Silicon Solar Cells Using an Experimental-Industrial Facility AK-1000 Inline. Journal of the Russian Universities. Radioelectronics. 2020;23(5):57-62. https://doi.org/10.32603/1993-8985-2020-23-5-57-62

Просмотров: 541


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)