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Abstract 

Introduction. In practical signal processing and its many applications, researchers and engineers try to find a 

number of harmonics and their frequencies in a time signal contaminated by noise. In this manuscript we pro-

pose a new approach to this problem. 

Aim. The main goal of this work is to embed the original time series into a set of multi-dimensional information 

vectors and then use shift-invariance properties of the exponentials. The information vectors are cast into a 

new basis where the exponentials could be separated from each other. 

Materials and methods. We derive a stable technique based on the singular value decomposition (SVD) of lag-

covariance and cross-covariance matrices consisting of covariance coefficients computed for index translated 

copies of an original time series. For these matrices a generalized eigenvalue problem is solved. 

Results. The original time series is mapped into the basis of the generalized eigenvectors and then separated 

into components. The phase portrait of each component is analyzed by a pattern recognition technique to dis-

tinguish between the phase portraits related to exponentials constituting the signal and the noise. A compo-

nent related to the exponential has a regular structure, its phase portrait resembles a unitary circle/arc. Any 

commonly used method could be then used to evaluate the frequency associated with the exponential. 

Conclusion. Efficiency of the proposed and existing methods is compared on the set of examples, including the 

white Gaussian and auto-regressive model noise. One of the significant benefits of the proposed approach is a 

way to distinguish false and true frequency estimates by the pattern recognition. Some automatization of the 

pattern recognition is completed by discarding noise-related components, associated with the eigenvectors that 

have a modulus less than a certain threshold. 
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Introduction. The present paper originates from 

a classical problem in signal processing, namely: 

how to find a number of exponential constituents 

and their frequencies  jv  in a time series 
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and then to apply some least square method. Here, the 

complex-valued amplitudes  jc  and the real distinct 

frequencies  jv  are such that ;j jc c   .j jv v    

Note that 0 0v   and 0c  is a real-valued constant. 

The random component ω is commonly interpreted as 

noise; s is called the signal and   is a real constant. 

A variety of subspace methods such as the Max-

imum Entropy Method [1], MUltiple SIgnal Classifi-

cation (MUSIC) [2], Linear Prediction Methods [3, 4], 

Estimation of Signal Parameter via Rotational Invar-

iance Technique (ESPRIT) [5], Matrix Pencil (MP) 

[6], and Minimum-Norm Method [7] have been used 

to find the exponentials  jv  in the measured data 
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 In [8], a unification of concepts of the 

subspace methods is presented in terms of the singu-

lar value decomposition (SVD) [9] of the 1d l   

trajectory matrix :X  

 0 1, , ... , ,lY Y YX  

      1 2, , ..., ,
t

k dY f k f k f k          (1) 

for some constant ;d  translations ;i  the constant 

.dl m    We emphasize that in [8], 1,i i    

whereas we propose to choose arbitrary translations. 

The new choice of translations allows us to increase 

the numerical rank [9] of the trajectory matrix ,X  

and to improve accuracy of frequency evaluation. 

Our method together with ESPRIT and MP em-

ploy shift-invariance properties of the trajectory ma-

trix ,X  however, there are some differences. ES-

PRIT was developed to estimate the direction-of-

arrival by a uniform linear array (ULA) of sensors. 

The data readings from the i-th sensor is associated 

with the i-th row of the trajectory matrix .X  The 

data in MP are similarly arranged in the row-wise 

format. Consequently, in both methods, the matrix 

X  is partitioned into two submatrices 0H  and 1H  

composed by the first 1d   and last 1d   rows of 

,X  respectively. Note that equal spacings between 

sensors in ULA yields 1i i    and hence the space 

shift-invariance property can be applied. If noise is 

absent and 2 2d n   then the space shift-

invariance property let us derive 
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where 1, ..., 1;j d   , ...,k n n   and Λ  is the 

eigenvalue matrix of .Ψ  For the non-uniform linear 

array (NULA) of sensors the translations  ik  are 

arbitrary and hence the space shift-invariance in 

space property of X  does not directly apply [10]. 

However, if 2 1d n   then the matrix X  has a time 

shift-invariance property: 
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where 1, ..., ;j d  , ..., ;k n n   and the matrices 

0 ,X  1X  are given by the first 1l   and last 1l   

columns of the matrix ,X  respectively; the matrix 

Λ  is as in (2). The matrix 

 
1 ,

j ki v
j d n k ne


    Λ  

is a generalized Vandermonde matrix and we assume 

that it is non-singular [11, 12]. Note that each fre-

quency jv  is given by the argument of the corre-

sponding eigenvalues of .Ω  

In the presence of noise, (3) no longer holds. 

Therefore, we construct a d d  matrix Ω̂  such that 

1
ˆ

k kY Y Ω  is minimal in some sense, where  kY  

are given in (1). In the framework of perturbation 

analysis it is possible to show that if 2 1d n   then 

frequencies  jv  could be approximated by the ar-

guments of the eigenvalues of ˆ .Ω  However, the 

number 2 1d n   of exponentials in the time series 

f  is a priori unknown and needs to be found. To 

deal with this problem we propose a two-step ap-

proach. In the first step, we select d  to be greater 

than the number of exponentials found either by ex-

isting methods [13‒19] or by computing the rank of 

0 .X  We stress that we do not need to estimate the 

number of exponentials exactly at this step but to 

ensure that 2 1.d n   In this case some eigenvalues 

of Ω̂  are associated with exponentials, while others 

are related to the noise. Note that just taking into the 

account information about the eigenvalues, it is im-

possible to judge whether the eigenvalue of Ω̂  is 

associated with the exponential or noise. Therefore, 

at the second step we cast the trajectory matrix 0X  

into the basis of the eigenvectors of ˆ .Ω  In the new 
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basis rows of 0 ,X  that are associated with the expo-

nentials, have a very specific structure, i. e. the phase 

portrait is either the circle or an arc. We hence pro-

pose to evaluate the number n by a pattern recogni-

tion technique. We also show that the frequencies 

 
n

j j n
v


 estimated using the information carried by 

the rows are more accurate than those estimated by 

the eigenvalues of ˆ .Ω  

Before we proceed forward, we adopt notation 

for the inner product      
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l l

f f f  of time series 
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" " stands for the complex conjugation, i. e. 
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l

l
f g f g




  Also, we defined the 

translation operator :Τ  

      1 , 2 , ..., 1 ;f f f f l Τ  

      0 , 1 , ..., 2 ,f f f f l    

where   
1

0

l

k
f f k




  stands for a time series. 

The case of a single exponential. In this sec-

tion, we consider a single exponential corrupted by 

noise: 

     ;f k s k k      ivks k e  

and highlight key elements of the proposed tech-

nique. Our goal is to estimate the value of v  given 

values of  f k  for 0,1, ..., .k l  

A number of methods have been developed to 

estimate a single exponential in the time series, e. g. 

[2, 3, 5, 6, 20‒29]. Some of them are based on an 

observation that the exponential satisfies a first order 

auto-regressive process 

    1 ivks k e s k   (4) 

and poles of the associated filter could be used to 

identify the frequency v  [24, 28]. 

To estimate v  when the observations are cor-

rupted by noise, it is possible to introduce some av-

eraging by solving a first order autoregressive prob-

lem, i. e. finding the scalar value of a  such that the 

error term e  in the following relation is minimized: 

     1 1 ;f k af k e k     min,le   

or in the matrix form: 

1 0 ;a X X E  min,E  

where       0 0 , 1 , ..., 1f f f l X  and 

     1 1 , 2 , ...,f f f l   X  are complex-valued 

1 1l   matrices. The value of a  is found by solving 

the least squares and is given by ˆ l  such that 

* *
1 0 0 0

ˆ ,l X X X X  

where * stands for the matrix conjugate transpose. 

Consequently, the frequency v  can be evaluated by 

 ˆln ,l l
       where ˆ l  is an eigenvalue in the 

case of 1 1  matrices *
1 0X X  and *

0 0.X X  After some 

algebra, it is possible to derive that 

   
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 

Τ Τ

Τ Τ Τ  

When information about a number of exponen-

tials in the time series is missing, one might increase 

an order of the autoregressive model to find con-

stants 1a  and 2 :a  

       1 21 1 1 ;f k a f k a f k e k       

min,le   

or in the matrix form: find the matrix A  such that 

 1 0 ; X AX E  min,l E  (5) 

where 
2 1

0 1
;

a a

 
  
 

A   0 0 1 1, , , ,lY Y Y X  and 

 1 1 2, , , ,lY Y YX  are complex-valued 2 1l   

matrices composed of the 2 1  information vectors 

   , 1 ,
t

kY f k f k      and E  stands for the 

2 1l   matrix associated with the noise. Note that 

in the case of the auto-regressive model of the first 

order, the information vectors kY  are scalars equal to 

 .f k  

Using least squares, the matrix A  in (5) is found by 

 
1

* *
1 0 0 0

ˆ .


Ω X X X X  
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In the case of the single infinite exponential cor-

rupted by the white noise, i. e.  , 1,    

 , 0,s    and  , 0  T  we obtain that 

 2
1̂ 2iva e    and  2 2

2ˆ 2 .iva e    Therefore 

the eigenvalues ˆ k  and eigenvectors ˆ kv  of Ω̂  are 
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2

1,2 2

1 9 4ˆ ,
2 2
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 2,1
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One may note that the argument of 

   2 4
1
ˆ 1 3ive O       could be used as an es-

timator of the frequency .v  The other eigenvalue 

   2 4
2
ˆ 1 2 12ive O        is rotated by the 

angle of π with respect to the argument of .ive  The 

arguments of eigenvalues may be thus used to esti-

mate the frequency ,v  but 2̂  provides a false esti-

mate. The modulus of eigenvalues could be used to 

distinguish genuine and false estimates, e. g. eigen-

values with the absolute values significantly less 

than one could be associated with the damping ex-

ponentials and be discarded. At the same time, the 

eigenvectors 1v̂  and 2v̂  also carry the information 

about the exponentials. 

In the proposed technique we look at the dynam-

ics of trajectory matrix 0Χ  by mapping it to the ba-

sis of eigenvectors using the matrix  1 2
ˆ ˆ ˆ, .V v v  An 

image of the information vector kY  in the new basis is 

1ˆ ;k kZ YV  0, ..., .k l  

In our case, 
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and hence 
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The first coordinate of ,kZ  i. e. ,1kZ  for 

0, ...,k l  rotates around the origin with an angle 

between 1,1kZ   and ,1kZ  approximately equal to the 

frequency .v  Its phase portrait 

    ,1 ,1
0

( ,
l

k k
k

Z Z


   resembles a unit circle (or an 

unit arc) with the center at the origin. The second 

coordinate of ,kZ  i. e. ,2kZ  for 0, ...,k l  does not 

have a particular well-defined behavior, i. e. its 

phase portrait is given by a set of points randomly 

centered around the origin. This difference in the 

phase portraits allows to distinguish pairs of the ei-

genvector-eigenvalue corresponding to the true fre-

quency from their false counterparts. 

We note that once the coordinate of kZ  related 

to the exponential signal is established (in our case 

the first coordinate), then the problem is simplified. 

Any appropriate method of the frequency estimation 

could be applied to recover a single exponential in 

the time series. 

Linear regression approach in the case of multi-

ple exponentials. In this section, we extend our pro-

posed approach to the time series composed of several 

exponentials and contaminated by noise. Now and for 

the rest of this article, we consider the information vec-

tors      1 2, , ...,
t

k dY f k f k f k          

associated with arbitrary translations  .i  We conse-

quently partition kY  into two time series kS  and kW  

,k k kY S W    

where      1 2, , ...,
t

k dS s k s k s k          

and obtain that 

,k
k kY C W  VΛ  0, ..., ,k l  

where  
1 , ;j ki v

j d n k ne


    V diag , ..., ;n niv iv
e e   Λ  

 , ..., .
t

n nC c c  Thus, the trajectory matrices 0Χ  

and 1Χ  could be expressed as 

 1
0 0 1 1, , ..., , , ..., ,l

lC C C W W W


    Χ V Λ Λ  

 1
1 0 1, , ..., , , ..., .l

lC C C W W W    Χ VΛ Λ Λ  

Note that each row of 
1, ,..., lC C C  Λ Λ  is as-

sociated with a unique frequency. The phase portrait 
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of the k -th row is given by the set of points 

 
1

0
,k

l
ijv

k j
c e




 representing a circle/arc with the ra-

dius of kc  around the origin. A key idea of the pro-

posed method is to represent 0Χ  in a new basis, ex-

tract its rows and estimate a frequency associated 

with each phase portrait. 

Linear regression problem. After some algebra, 

we derive that 1kY   and kY  are connected by the 

relation 

 1 1 ;k k k kY Y W W     Ω  ,Ω VΛV  

where  
1

* *


 V V V V  is the MoorePenrose in-

verse of .V  In the case of 2 1 ,n d   the matrix V  

is square, and hence 1. V V  Furthermore, if 

2 1n d   then similar to (4) we obtain the relation 

between the signal components: 

1 ,k kS S Ω  
1Ω VΛV  

and to find frequencies  kv  in the noiseless time se-

ries one needs to compute Ω  and then find its eigen-

values. 

As in the case of the single exponential, we in-

troduce averaging and approximate the matrix Ω  by 

the real-valued d d  matrix ˆ ,Ω  which is the solu-

tion of the linear regression problem 

1 min.k kY Y  Α  Namely, the matrix Ω̂  is 

called the best estimate of ,Ω  if 

 ˆ argmin ,J ΑΩ Α  where 

 
 

1
*

0

1

1
;

; 0, ..., 1.

l

k k
k

k k k

J E E
l

E Y Y k l









   

Α

Α

 (6) 

Note that in the case of multiples exponentials 

we do not know the number of exponentials contrib-

uting to the time series .f  For now we assume that 

2 1 .n d   We discuss the selection of translations 

 
1

d
i i
  and the dimensions of the information vec-

tors kY  later in this section. 

It is possible to prove, see Appendix A for the 

proofs, that if 0det 0,Γ  then  J Α  has the mini-

mum only at ˆ ,Ω  satisfying 

 1 0
ˆ ,Γ ΩΓ   (7) 

and its minimal value is  1 *
min 2 1 0 1tr ,J  Γ Γ Γ Γ  

where 

*
0 0 0

1
;

l
Γ Χ Χ  *

1 0 0
1

;
l

Γ Χ Χ  *
2 1 1

1
.

l
Γ Χ Χ  

If 2 1 ,n d   then for the noiseless time series 

,f  the solution Ω̂  of the linear regression problem 

coincides with ,Ω  and for the noisy data the eigen-

values of Ω  and Ω̂  are connected via 

 

1

ˆ ,n n

n





  Λ Λ Λ   

where 
 nΛ  are some diagonal matrices. Hence, we 

can use the eigenvalues of 1
1 0

ˆ Ω Γ Γ  to evaluate 

those corresponding to Ω  and by computing the 

argument of eigenvalues to find the frequencies. 

There are some difficulties since the number of 

exponentials is a priori unknown, but it could be 

estimated by methods discussed in [13‒19] or by 

computing the rank of 0 .Χ  In the case of noiseless 

time series, we have  0rank 2 1n Χ  for values 

2 1.d n   This means that after a certain increase 

in ,d  the rank of 0Χ  stays constant and this thresh-

old could be used to estimate the number of exponen-

tials. In case of the noisy data, one can instead esti-

mate the numerical rank of 0Γ  by SVD [8]. Under 

the white noise assumption and ,m   the singular 

values  
1

d
k k

  of 0Γ  according to [8, 28] are such 

that 

2

2

, 1, ..., 2 1;

, 2 2, ..., ,

k
k

k n

k n d

    
  

  

 

where 0k   are the singular values associated 

with the signal component and 
2  stands for the 

noise variance. The values of k  depend on the 

choice of translations  
1

d
i i
  and could be close to 

zero if the information vectors iY  are almost linearly 

dependent. By varying the translations, it is possible 

to make the information vectors more linearly inde-

pendent, consequently increase ,k  and thus to ob-

tain a notable distinctions between the singular val-

ues associated with the signal and noise. Note that 

the singular values associated with the white noise  
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are constant. In the case when m is not large or when 

the noise is not white, smallest singular values k  

could start to overlap with those related to noise [30, 

31] and hence the notable decrease may be missing. 

Nevertheless, the SVD provides a good estimate for 

the numerical rank of matrix [8]. 

We note that if 2 1d n   then some eigenvalues 

of Ω̂  approximate the frequencies  iv  while the 

other are associated with the noise. As in the case with 

the single exponential, selection of eigenvalues asso-

ciated with the exponentials is a matter of belief if no 

information regarding the noise structure is provided. 

On other hand, the eigenvectors of Ω̂  can bring more 

information to decide whether the eigenvalue-

eigenvector pair is associated with the exponential or 

noise. The ideas of using the eigenvectors are closely 

related to the time series decomposition by the Singu-

lar Spectrum Analysis (SSA) [32, 33]. 

Time series decomposition and the principal 

component approach. Before introducing the prin-

cipal components using eigenvectors of ˆ ,Ω  we 

briefly review some key points of the Singular Spec-

trum Analysis (SSA). Our approach exploits ideas of 

SSA, yet SSA and its various modifications such as 

Monte Carlo SSA [34‒36] and Multiscale SSA [37], 

Random Lag SSA [38], Oblique SSA [39] do not 

compute the frequencies  v  but allow representa-

tion of the data f  in a new convenient way. In par-

ticular, SSA relies on the KarhunenLoeve decom-

position of the correlation matrix 

2 *
0

1
,

l
Γ UΣ U  

and on representation of the vectors  kY  in a coor-

dinate system defined by the eigenvectors  ku  of 

0 ,Γ  or namely 

*
0;Ρ U Χ   1, ..., ,dU u u  

where the rows  kp  of the matrix P can be seen as 

the coordinates of  kY  in the orthogonal base  ku  

and are commonly called principal components. 

Note that the vectors  kp  have the important prop-

erty of orthogonality 
* 2.ΡΡ Σ  However, arbitrary 

exponentials do not have to be orthogonal with re-

spect to the inner product l),(   due to the finite 

number of sampling points 0, ..., 1.k l   There-

fore, each principal component kp  is usually a line-

ar combination of exponentials even for the noiseless 

data. We would like to emphasize that even for the 

noiseless data, there is no one-to-one correspondence 

between the exponentials and the principal compo-

nents kp  [40]. Hence, our goal is to obtain a one-to-

one correspondence between the frequencies  v  

and certain objects in the absence of noise as fol-

lows. 

We achieve our goal by representing the infor-

mation vectors kY  in the basis of eigenvectors of Ω̂  

instead of the basis associated with 0Γ  as it com-

pleted in SSA. Consequently, we call the proposed 

method the Non-Hermitian Singular Spectrum Anal-

ysis (NH-SSA). For the rest of this article we as-

sume, that the eigenvalues of Ω̂  are all different and 

the Jordan decomposition of Ω̂  holds as 

1ˆ ˆˆ ˆ .Ω VΛV  

We define a central object in our approach, 

namely the image of information vectors kY  in the 

basis of ˆ :V  

 1ˆ ,k kZ YV  0, ..., .k l  (8) 

Using the small perturbation theory it is possible 

to show that, in the case of 2 1,d n   if all eigen-

values of Ω  are distinct then the eigenvector matrix 

V̂  is such that 

  1 1ˆ ,  V I R V  (9) 

where the matrix  R  is analytic with respect to   

and    1
0

,n n
n

 


  R R  where each diagonal 

entry of 
 1nR  vanishes for any n. Recalling that 

1ˆ ,k kZ YV  we have 

1ˆ ,k k
k kZ C C W     Λ RΛ V  

or in its coordinate-wisely form as 

1 , ;k
k j j k jZ c      

 

 
2 1

1
, ,

1

;
n

k
k j ji i i ji k i

i

R c V W






     

 

1, ..., 2 1.j n   
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Here, j stands for the row index of the vector 

 ,1 ,2 1, ..., ,
t

k k k nZ Z Z   jiv
j e   is the eigenval-

ue of ,Ω  and ,k j  represents noise. For each value 

of ,j  the consecutive values of , ,k jZ  0, ,k l  

rotate around the origin, each time turning by the angle 

of jv  (up to the level of noise  O  ). Furthermore, if 

2 1d n   and 0  then there is one-to-one corre-

spondence between the rows of kZ  and exponentials. 

In many practical applications, a number 2 1n  

of exponentials in the time series f  is unknown. 

Therefore, in order not to loose some exponentials, 

we need to have 2 1.d n   This implies that we 

decompose the noise   into exponentials. There-

fore, some rows of kZ  are attributed to noise and do 

not have a stable "rotational" pattern around the 

origin, as was discussed in section 1 for the case of 

the single exponential. 

Thus, to decide whether the j-th row of kZ  is as-

sociated with the noise or exponentials, we apply the 

pattern recognition technique by visualizing dynam-

ics of  , 0
.

l
k j k

Z


 Namely, the sequence  , 0

l
k j k

Z


 

is thought to represent a single exponential if the 

phase portrait, i. e. the set of points 

    , ,
0

,
l

k j k j
k

Z Z


  
   lies between two concen-

tric circles, see Fig. 1, a; the modulus ,k jZ  is 

bounded around a certain constant. One other hand, 

 

Fig. 1. Typical results for the sequence  , 0

l
k j k

Z


 associated with an exponential: а ‒ the phase portrait     , ,
0

,
l

k j k j
k

Z Z


  
 

 

lies between two concentric circles; dashed and dotted lines represent one and two standard deviations from the mean modulus;  

b ‒ the modulus of  , 0

l
k j k

Z


 is bounded from zero (  0,k l ); c ‒ the phase  
j k  is a linearly increasing function (  0, 1k l  ); 

d ‒ mapping of  , 0

l
k j k

Z


 back to the original space 
   j

f k  is an exponential (  0, 1k m  ) 

0.04 

0.045 

0.05 

0.055 

0.06 

0 50 100 150 k  

 
4Z k  

а b 

0 

0.04 

‒0.04 

‒0.08 

4Z  

0 ‒0.04 0.04 4Z  

c 

15π 

10π 

5π 

0 50 100 150 k 

0 

0.2 

0.4 

 
j k  

   4f k  

‒0.2 

‒0.4 

‒0.6 
0 100 200 k 

d 

0.040056v    



Известия вузов России. Радиоэлектроника. 2020. Т. 23, № 3. С. 6–24 

Journal of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 3, pp. 6–24 
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the sequence  , 0

l
k j k

Z


 is associated with noise 

when the phase portrait     , ,
0

,
l

k j k j
k

Z Z


  
   

is randomly distributed around the center, as shown 

in Fig. 2, a; the modulus ,k jZ  significantly varies. 

Furthermore, for the single exponential signal, the 

phase  j k  is linearly increasing as shown in 

Fig. 1, c, while for  , 0

l
k j k

Z


 related to noise the 

phase    
1

1, ,0
ln

m
j k j k jk

m Z Z



   

   could 

have some irregularities, see Fig. 2, c. 

Once the rows of kZ  associated with the exponen-

tials are established the process is greatly simplified, 

note that each  , 0

l
k j k

Z


 represents a single exponen-

tial and a whole variety of the frequency estimation 

methods could be applied to recover the frequency. 

Finally, we note that similar to the SSA methodol-

ogy, sequences  , 0

l
k j k

Z


 associated with either the 

exponentials or noise could be grouped together and 

mapped back to the original space as follows. For ex-

ample, mapping of  , 0

l
k j k

Z


 associated with a sin-

gle exponential back to the original space results in 

the trajectory matrix
      0 ,s ji k vj

j ks
c e O

 
  Χ  

 

b а 

Fig. 2. Typical results for the sequence  , 0

l
k j k

Z


 associated with noise: а ‒ the phase portrait     , ,
0

,
l

k j k j
k

Z Z


  
 

 is 

randomly distributed around the origin; b ‒ the modulus of  , 0

l
k j k

Z


 is not bounded from zero (  0,k l ); c ‒ the phase 

 
j k  can have one or multiple "wrapping" events [41] (  0, 1k l  ); d ‒ mapping of  , 0

l
k j k

Z


 back to the original space 

   j
f k  is an irregular signal (  0, 1k m  ) 

c 

   10f k  

0 

0.05 

0.1 

‒0.05 

‒0.1 

‒0.15 
0 100 200 k 

d 

0 

0.05 

‒0.05 

‒0.1 

10Z  
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0.2 

0.4 
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 
10Z k  

 
j k  

60π 

40π 
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which is a Hankel matrix when the translations 

1.s s    We average elements in 
 
0
j

Χ  and thus 

map the sequence  , 0

l
k j k

Z


 to the original space as 

     ,jiv kj
jf k c e O    0, , 1.k m   Fig. 1, d 

and 2, d show mappings of  , 0

l
k j k

Z


 associated 

with the exponential and noise, respectively, to the 

original space. 

Note that 
   j

f k  associated with the expo-

nential is a cosine with an approximately constant 

amplitude, while the mapping of  , 0

l
k j k

Z


 related 

to the noise results in some irregular structure. Simi-

lar to SSA, sequences  , 0

l
k j k

Z


 associated with 

noise could be all grouped together and mapped back 

to ˆ .  We thus produce a decomposition of the origi-

nal signal  ˆ ˆ ,f f O    where 
 ˆ .

j

j
f f  

Decomposition of the time series f  into a sum 

of 
 

,
j

f  where each 
 jf  is associated with the 

single exponential, depends on the noise variance, 

proposed number n of exponentials and translations 

 .  In the current model we use translations such 

that  1 ,i i m    where m  is called the multiplici-

ty. Hence, the decomposition depends on the pair of 

parameters  , .d m  The multiplicity m  can be cho-

sen arbitrarily. However, our numerical experiments 

show that m  should be of the same order as the ex-

pected period. In this case, the information vectors 

 kY  tend to be more linearly independent in the 

computational sense and the matrices 0Γ  and 1Γ  be 

better conditioned. 

Numerical realization. In this section, we pro-

vide a numerical algorithm to evaluate 
1ˆ V  in order 

to map the time series into the principal components. 

Please note that since 0Γ  and 1Γ  are typically ill-

conditioned matrices and the straightforward calcu-

lation of eigenvectors V  of 1
1 0

ˆ Ω Γ Γ  could lead 

to computational errors [42]. We propose to maxim-

ize the "numerical" rank of 0Γ  and 1Γ  by varying 

.m  Further, noting that the SVD is less error prone 

for the symmetrical positive-definite matrices than 

the eigenvalue decomposition, in order to achieve a 

better numerical accuracy we suggest to exploit the 

SVD of 0Χ  and 1Χ  as follows. 

Assuming that trajectory matrices 0 ,Χ  1Χ  have 

the rank equal to 2 1n  we denote the SVD of 0Χ  

and of 1Χ  as 

 *
0 0 0 0 ;Χ U D ΠW  *

1 1 1 1 ,Χ U D ΠW  (10) 

where 2 1n l   matrix Π  stands for the projector 

mapping of  onto 
 2 1

,
n

 and where the uni-

tary matrices ,s sU W  and the non-negative diagonal 

matrix sD  are of size 2 1 2 1,n n    l l  and 

2 1 2 1n n    respectively for 0.1.s   From (10) it 

follows that the equation 1 0
ˆΓ ΩΓ  equivalent to 

, Q R  

where * *
1 0 ;Q ΠW W Π  1 *

1 1 1 1
ˆ ; D U ΩU D  

1 *
1 1 0 0.R D U U D  Let us emphasize that the matrix 

Q is a projection of the unitary matrix *
1 0 ,W W  and 

therefore 1.Q  The matrix  has the same spec-

trum as Λ̂  as Ω̂  has. 

Let us denote by Φ  the matrix consisting of the 

generalized eigenvectors of the matrices  ; ,Q R  

namely ˆ .QΦ RΦΛ  Taking into the account that 

1ˆ   Q RΦΛΦ R  and the definition of the matrix 

  it is easy to check that 

    1
1 1 1 1

ˆ ˆ .


Ω U D RΦ Λ U D RΦ  

From the Jordan decomposition of Ω̂  it follows 

that the eigenvectors V̂  of Ω̂  and generalized ei-

genvectors Φ  are connected by 

1 1 0 0
ˆ . V U D RΦ U D Φ  

Therefore, by definition (8) we obtain 

1 1 1 *
0 0

ˆ ;k k kZ Y Y   V Φ D U  1, , .k l  

Finally, we combine all steps together and pro-

vide the numerical algorithm to estimate exponen-

tials in the time series: 

Input: the time series  ;f k  0,1, , 1.k m   

1. Pick a value of d n  and consider a set of 

multiplicities 0,1, 2, .m   
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Fig. 3. Dependence of  0cond Γ  on the multiplicity m  and 

the size of 0Γ . Cells marked by asterisks, where the condition 

number is minimal, are potential candidates to choose a pair 

of  ,m d  

10 12 14 16 18 20 

d 

1.5 

2 

2.5 

3 

1 

2 

3 

4 

5 

6 

7 

8 

m  

  10 0log cond Γ  

2. For a selected value of ,m  compute the trans-

lations  1 ,k k m    where 0,1, , .k d  

3. Form the information vectors  
0

l
k k

Y


 and 

trajectory matrices 0Χ  and 1.Χ  

4. Repeat Steps 1‒3, while computing the condi-

tion number   1
0 0 0cond Χ Χ Χ  on a grid of 

 , .d m  

5. Select a pair of  , ,d m  where  0cond Χ  at-

tains the minimum and compute trajectory matrices 

0Χ  and 1Χ  for the found pair of d  and .m  

6. Perform the SVD on matrices: 

*
0 0 0 0 ,Χ U D ΠW  *

1 1 1 1 .Χ U D ΠW  

7. Calculate * *
1 0Q ΠW W Π  and 

1 *
1 1 0 0.R D U U D  

8. Evaluate the generalized eigenvalues 

 0 1
ˆ ˆ ˆ ˆ, , , l   Λ  and eigenvectors Φ  for the 

pair of matrices Q  and R  such that ˆ .QΦ RΦΛ  

9. Compute map information vectors kY  into the 

new basis: 1 1 *
0 0 ,k kZ Y Φ D U  1, , .k l  

10. Discard rows  , 0

l
k j k

Z


 associated with ei-

genvalues j  such that ˆ ,j c    where c  is a 

given threshold. These rows are related to the signal 

components 
 jf  damping with time. The value of 

c  could be chosen such that a number of general-

ized eigenvalues ˆ
j c    is the same as the number 

of singular values of 0Γ  associated with the signal. 

11. Apply pattern recognition technique to the 

remaining  , 0

l
k j k

Z


 and evaluate the number n of 

exponentials. The number n of exponentials is de-

termined by the number of  , 0

l
k j k

Z


 which have 

the graph lying in a vicinity of the unit circle in the 

complex plane. 

12. Apply one of the frequency estimation meth-

ods to recover a single exponential in  , 0

l
k j k

Z


 

associated with the regular patterns. Here, we use 

ESPRIT to find a single exponential in  , 0
.

l
k j k

Z


 

Output: List the frequencies  jv  associated 

with  , 0

l
k j k

Z


 showing the regular patterns. 

Comparison with other high resolution 

methods. Signal corrupted by the white noise. 

Let us consider the signal s consisting of four unit-

amplitude cosines sampled at m = 300 points. The 

frequencies for these cosines are 

 1 2 32 0.04; 0.06; 0.07v v v     and 4 0.12.v   

The signal s is corrupted by the white Gaussian noise 

  with the zero mean   0E    and variance 

 var 1.   In this case, the SNRdB defined by 

 2 2
1010log m ms   is approximately 3.5 dB. 

For a given realization of the time series, we 

compute the condition number  0cond Γ  on the 

grid of  , ,d m  as shown in Fig. 3. There are several 

potential pairs of m  and d, marked by red asterisks, 

where the condition number is close to its minimum. 

We select the value of m  equal to 4, while the 

choice for d is less restrictive, at the same time is 

better to select d rather large in order to increase the 

size of 0Γ  and reduce influence of noise on the in-

formation-carrying components. 

Our experience reveals that it is important to se-

lect the value of d to be at least three to four times 

larger than the number of exponentials, which could 

be estimated, for example, by analyzing eigenvalues 

of the auto-covariance matrix 0Γ , shown by blue 

triangles in Fig. 4. We note that a significant drop 

occurs at the 9th eigenvalue. Hence, 4n   (since the 

cosines are used to define the signal). Therefore, 
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while applying the NHSSA method, we assume 

18,d   however any number greater than 12 will be 

also sufficient. We stress that the precise determina-

tion of d is not important. Additional dimensions 

d n  are used to decompose the noise into some 

exponentials and these false exponentials are dis-

carded later at either Step 10 or 11. 

A number of these false estimates is controlled 

by the threshold parameter c  in Step 10. If the val-

ue of c  is reduced then more false estimates are 

recovered, but then could be discarded at Step 11. At 

the same time, if the value of c  is increased then 

NHSSA may start to omit true frequencies. The val-

ue of c  could be chosen such that a number of 

generalized eigenvalues ˆ
j c    is the same as the 

number of 0Γ  singular values associated with the 

signal. Fig. 5 shows the distribution of ˆ j  for one of 

the realizations of the while noise-corrupted signal, 

in the case of 4n   and 18.d   Four pairs of the 

generalized eigenvalues have a modulus close to 1, 

while the rest has a significantly lower magnitudes. 

The value of 0.8c   provides a threshold to sepa-

rate the true and false estimates in this case. Our ex-

perience indicates that the optimal value of 

0.8c  , however it might need to be decreased if 

the SNR is reduced or the time series length is re-

duced. We nevertheless propose to keep the value of 

c  at the lower end to obtain some false estimates 

and then discard them based on using the pattern 

recognitions. 

We consider 100 realizations, r, of the time se-

ries and estimate frequencies by the ESPRIT and 

NHSSA. To improve the accuracy of frequency es-

timation, the size of the auto-covariance matrix for 

ESPRIT is selected to be 3 100.m   We consider 

two instances of ESPRIT denoted by ESPRIT( n ), 

when 4n   (an exact number of cosines in the time 

series) or 7n   is the assumed number of cosines in 

the ESPRIT algorithm.  

Fig. 6, a plots the recovered frequencies for each 

realization according to each method, i. e. frequen-

cies recovered by NHSSA are plotted by red circles, 

results of the ESPRIT recovery are shown by dots 

and crosses. Fig. 6, b shows the probability, p, of 

occurrence (a number of times the frequency is re-

covered within the 0.005-wide intervals, which uni-

formly span the frequency domain, divided by the 

total number of realizations) for the estimated fre-

quencies. Both instances of ESPRIT almost always 

 

Fig. 5. Generalized eigenvalues  0 1
ˆ ˆ ˆ ˆ, , , l   Λ  for the 

pencil ˆQΦ= RΦΛ  
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Fig. 6. Recovery of frequencies in the case of the white Gaussian noise: a ‒ frequencies estimated by NHSSA and ESPRIT for 100 

realizations of the white Gaussian noise. The number of cosines in ESPRIT is assumed to be either 4 or 7;  

b ‒ the probability, p, of occurrence for the estimated frequencies 
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Fig. 4. Eigenvalues of the auto-covariance matrix 0Γ  for the signal 

consisting of a sum of eight exponentials and the constant. 

The signal is corrupted by either the white Gaussian noise  

or auto-regressive noise of the first and second orders 
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recover the frequencies, while NHSSA shows good 

performance for  2 0.04v    and  2 0.12,v    

while slightly underperforms for  2 0.06v    and 

 2 0.07.v    

Instead of identifying both of the latter frequen-

cies, NHSSA recovers a single frequency in the mid-

dle. We will discuss the separability of frequencies 

later in this section. Note that all methods recover 

the frequencies quite well, especially after taking 

into the account that NHSSA does not have any in-

formation about the number of exponentials. 

We list the estimated mean and variance for each 

 
4

1
ˆk k
v


 in Table. The variance of ESPRIT is smaller 

than that of NHSSA, but the ESPRIT requires a 

number of cosines as an input variable. Additionally, 

the ESPRIT with 7n   provides additional esti-

mates, shown by black crosses, that are distributed 

rather randomly. It is hard to distinguish these false 

estimates from the true frequencies if only their  

values are given (as a potential solution one may 

apply ESPRIT with different sizes of the auto-

covariance matrix to investigate whether the esti-

mates are true or false). The NHSSA also has some 

false estimates, i. e. red circles lying away from the 

genuine frequencies. 

Finally, we illustrate separability of the original 

time series f s   into the components, namely: 

ŝ  ‒ the recovered signal and ̂  ‒ the estimated 

noise. The recovered signal ŝ  is obtained by group-

ing and mapping sequences associated with 

 , 0

l
k j k

Z


, which have a circular phase portrait, to 

the original space. The noise ̂  is estimated by 

grouping and mapping the rest of  , 0

l
k j k

Z


 to the 

original space as well. Fig. 7, a shows the signal s 

and the time series f s   for one of the realiza-

tions of .  The recovered signal ŝ  is compared to 

the original signal s in Fig. 7, b. Note that the two 

time series match quite well, but ŝ  still have some 

noise. Fig. 7, c shows the comparison of time series 

for the original   and estimated ̂  noise, which 

match quite good as well. 

We emphasize that the decomposition of the 

time series  ˆˆf s O    is obtained straight 

from grouping appropriate  , 0

l
k j k

Z


 and mapping 

them to the original space. The proposed method 

thus allows us to de-noise the original time series. 

Despite some inspiring empirical observations, fur-

ther investigations are required to derive sharp esti-

mates for ˆs s  and ˆ .    

Signal corrupted by the autoregressive noise. 

To further test the proposed method, we consider a 

signal s consisting of the same four cosines, but now 

it is corrupted by the noise ,  which is generated 

according to an autoregressive (AR) process of ei-

ther the first or second order:  

   0.7 1 ,k k k       

or       0.7 1 0.4 2 ,k k k k          

Estimation of the frequencies  kv  by ESPRIT and NHSSA in the case  

of time series s corrupted by the white Gaussian or autoregressive noise of the first and second order 

v  
 ˆE v   ˆvar v  

NHSSA ESPRIT(4) ESPRIT(7) NHSSA ESPRIT(4) ESPRIT(7) 

White Gaussian noise, dBSNR 3.5 dB  

0.04 0.040066 0.040008 0.040018 4.2092e-08 2.5401e-08 2.5111e-08 

0.06 0.060517 0.060011 0.060014 1.6183e-06 3.0151e-08 3.0139e-08 

0.07 0.069285 0.070011 0.070007 3.1890e-06 2.1462e-08 2.2494e-08 

0.12 0.119960 0.119980 0.119970 4.8482e-08 2.9076e-08 3.2675e-08 

AR1 noise, dBSNR 0.9 dB  

0.04 0.039971 0.039348 0.039885 1.0164e-06 1.2936e-05 6.7429e-07 

0.06 0.059944 0.059894 0.059777 4.8822e-07 8.3477e-06 4.3980e-07 

0.07 0.069988 0.068586 0.069860 3.9226e-07 8.6346e-06 2.2843e-07 

0.12 0.11999 0.116940 0.119830 1.2697e-07 0.00010443 8.3213e-08 

AR2 noise, dBSNR 1.5 dB  

0.04 0.040022 0.040044 0.040022 1.3134e-07 7.3852e-08 7.5397e-08 

0.06 0.060098 0.060107 0.060024 2.8021e-07 3.1196e-07 1.0839e-07 

0.07 0.069964 0.070132 0.070059 3.0026e-07 1.3255e-07 1.0902e-07 

0.12 0.119770 0.120110 0.119980 5.2731e-06 3.3860e-07 2.2155e-07 
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where  k  is the white Gaussian noise such that 

  0E    and  var 1;   the SNRdB for the former 

and latter models is 0.6 and 1.5 dB, respectively. 

Note that for the AR noise, the eigenvalues of 

0Γ  do not have a clear jump as shown in Fig. 4 and 

the number of exponentials for ESPRIT could be 

estimated between 9j   and 15j   or higher (since 

each cosine is associated with two exponentials, and 

thus the number of cosines could be between 4 and 7). 

After computing the condition number  1cond Χ  on 

the grid of  , ,d m  we choose 3m  and 18.d   As 

before, we consider 100 different realizations of the 

noise and estimate frequencies by the same three me-

thods. Results of the frequency recovery for the AR1 

and AR2 noise models are shown in Fig. 8 and 9, 

respectively. Note that AR1 noise model generates a 

significant number of false estimates for ESPRIT, 

there is also a comparable number of false estimates 

for NHSSA, but the latter could be discarded using 

the pattern recognitions. For the AR2 noise model, 

NHSSA performs significantly better than ES-

PRIT(7), but less effective than ESPRIT(4). Howev-

er, ESPRIT(4) has an advantage by exploiting in-

formation regarding the correct number of exponen-

tials in the signal. If the number of exponentials is 

increased, e. g. as in ESPRIT(7), false estimates oc-

cur. For the sake of completion, we list the mean and 

variance for each recovered frequency in Table. 

Separability. In this section, we consider a sig-

nal composed of two cosines with close lying fre-

quencies that are hard to detect simultaneously due 

to the shortness of the time series ,f  i. e. the sum of 

 

c 

Fig. 7. Recovery of the signal in the case of the white Gaussian noise: a ‒ comparison of the original signal s consisting of the 

four cosines to the corrupted signal f s  , where   is the white Gaussian noise; b ‒ comparison of the original  

signal s and the recovered one ŝ ; c ‒ comparison of the original noise   and the recovered noise ̂  
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cosines is sampled at m =100 points. Namely, we 

consider  
1 2 0.01v    and  

2 2 0.015,v    

0.5k kc c   for 1, 2,k   and 0 1;c    the noise 

  is assumed white Gaussian with the zero mean 

  0E    and  var 1 16.   The signal s and time 

series f  are shown in Fig. 10, a; the SNR is 15 dB. 

Estimation of the frequencies both by ESPRIT 

and NHSSA is shown in Fig. 11. Note that ESPRIT(2) 

with the correct number of cosines fails to estimate 

both frequencies simultaneously, and rather estimates 

a single frequency somewhere in the middle between 

 1 2v   and  2 2 .v   The NHSSA also fails to dis-

tinguish both cosines and recovers a single frequency  

some sort of averaging of  1 2v   and  2 2v   as 

well. This frequency is related to an eigenvalue pair 

(the cosine consists of two exponentials) lying close 

to the unit circle, while other eigenvalues have signif-

icantly lower moduli and are related to noise. The 

phase portrait     , ,
0

,
l

k j k j
k

Z Z


  
   of the se-

quence  , 0

l
k j k

Z


 associated with the pair lying 

close to the unit circle is a spiral, see Fig. 12, a. 

We stress that the original problem of exponen-

tial recovery was concerned with finding frequen-

cies : .k kv v R  However, both ESPRIT [43] and 

NHSSA could be applied to recover damping expo-

nentials with frequencies  : ,k kv v C  where C  

is the upper complex plane, which discussion is be-

yond the scope of this manuscript. Therefore, instead 

of recovering both exponentials with closely lying 

frequencies, the NHSSA approximated them by a 

single damping cosine, as could be observed in the 

mapping of  , 0

l
k j k

Z


 back to the original space, 

see Fig. 12, d. This information is not revealed by 

standard ESPRIT, since it only relies on the eigen-

values and discards information carried by the ei-

genvectors. The noise ̂  and ŝ  are both recovered 

in NHSSA by grouping appropriate eigenvalues and 

mapping back to the original space, see Fig. 10, b, c. 

Nevertheless, further investigations are necessary to 

understand when the recovery of two exponentials 

sampled on a short interval is feasible. 

 

Fig. 8. Recovery of frequencies in the case of the AR1 noise: a ‒ frequencies estimated by NHSSA and ESPRIT for 100 realizations of the 

autoregressive noise of the first order. The number of cosines in ESPRIT is assumed either to be 4 or 7;  

b ‒ the probability, p, of occurrence for the estimated frequencies 
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Fig. 9. Recovery of frequencies in the case of the AR2 noise: a ‒ frequencies estimated by NHSSA and ESPRIT for 100 realizations of the 

autoregressive noise of the second order. The number of cosines in ESPRIT is assumed either to be 4 or 7; b ‒ the probability, p, of 

occurrence for the estimated frequencies 
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Conclusions. We present a new method of es-

timating exponentials and their frequencies in the 

time series. The proposed method decomposes the 

time series consisting of several exponentials into 

components by casting the information vectors into a 

new basis. Each component corresponds either to 

 

c 

Fig. 10. Recovery of the signal in the case of two cosines with close lying frequencies: a ‒ comparison of the original  

signal s consisting of two cosines with closely lying frequencies to the corrupted signal f s  , where    

is the white Gaussian noise; b ‒ comparison of the original signal s and the recovered one ŝ ;  

c ‒ comparison of the original noise   and the recovered noise ̂  
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Fig. 11. Recovery of frequencies in the case of two cosines: a ‒ frequencies estimated by NHSSA and ESPRIT for 100 realizations  

of the white Gaussian noise. The number of cosines in ESPRIT is assumed to be either 2 or 5; b ‒ the probability, p,  

of occurrence for the estimated frequencies 
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only one of the exponentials or to noise. For the in-

formation-carrying component one of many frequen-

cy estimation techniques (e. g. ESPRIT, MUSIC, 

ML, etc.) could be applied to recover a single expo-

nential. The overall accuracy of the proposed method 

is comparable with that of the widely used ESPRIT 

method, if the latter is provided with the number of 

exponentials in the signal. Furthermore, when the 

model order (number of exponentials) in ESPRIT is 

overestimated, the proposed method can reduce the 

number of the false frequency estimates, as shown 

by numerical examples. 

One of the significant benefits of the proposed 

approach is a way to distinguish false and true fre-

quency estimates using the pattern recognition. The 

primary automatization of the pattern recognition is 

completed by discarding noise-related components, 

associated with the eigenvectors that have a modulus 

less than a certain threshold .c  At the second stage, 

the phase portrait and phase dynamics for the re-

maining components could be visually analyzed. 

Images of associated with the true frequencies have 

phase portraits resembling unit circles and phase 

dynamics with zero or a minimal number of phase 

 

b а 

Fig. 12. Typical results for the sequence  , 0

l
k j k

Z


 associated with an average of two exponentials with closely lying 

frequencies: а ‒ the phase portrait     , ,
0

,
l

k j k j
k

Z Z


  
 

 is a spiral; dashed and dotted lines represent one and two standard 

deviations from the mean modulus; b ‒ the modulus of  , 0

l
k j k

Z


 is generally decreasing (  0,k l ); c ‒ the phase  
j k   

is a linearly increasing function (  0, 1k l  ); d ‒ mapping of  , 0

l
k j k

Z


 back to the original space 
   j

f k  is a damping 

cosine (  0, 1k m  ) 
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wrapping events. Closeness of the phase portrait to 

the unit circle and mapping of the component back 

to the original space could provide certain levels of 

confidence that the component is associated with the 

exponential or noise. False frequencies associated 

with the phase portraits that have a random structure. 

At the same time further research is needed to 

produce a fully automatic pattern recognition 

algorithm. 

Finally, we note that under certain conditions the 

proposed method could be generalized to estimate 

exponentials in the time series where some meas-

urements are missing [44]. 

A Derivations of main mathematical results. 

Proof of (7): Note that the cost function J  defined 

by (6) has the following representation 

 

  

1
*

0

1
*

1 1
0

1
tr

1
tr .

l

k k
k

l

k k k k
k

J E E
l

Y Y Y Y
l







 


 
  

 
 

 
   

  





Α

Α Α

 

Considering the change of variables 

1
1 0 , Α Γ Γ U  it is easy to see that the term corre-

sponded to the first power of U  vanishes by the def-

inition of 1Γ  and 0 ;Γ  and the cost function is 

     

 

*
1 1

1 1 0 0 1 1 0 0

* *
0 0

1
tr

1
tr .

J
l

l

    



Α Χ Γ Γ Χ Χ Γ Γ Χ

UΧ Χ U

 

Since the matrix *
0 Γ WΛW  is non-negative 

definite, the matrix of its eigenvalues 

 1diag , , d  Λ  has only non-negative entries. 

Therefore, introducing ,U UW  we have  

   * *
0

2

1 1

tr tr

0,
d d

i ij
i j

U

 

 

 
   

 
 

 

UΓ U UΛU

 

and hence the unique extremum exists at 0,U  or 

1
1 0 .Α Γ Γ  

Proof of (9): Let the Jordan decomposition of Ω  is 

 1 1ˆ ˆˆ ˆ , V Ω ΛV  (11) 

where V  and Λ  are matrices consisting the eigen-

vectors and eigenvalues of ˆ ,Ω  respectively. Then 

after multiplying (11) by the matrix V  from the left 

and exploiting the definition (9) of ,V  we have 

 
1 1ˆ ˆ ˆ ˆˆ .     V ΩV RV ΩV Λ ΛR  (12) 

Note that since matrices 0Γ  and 1Γ  are second 

degree polynomials with respect to  , the Taylor 

series expansion of 1
1 0

Ω Γ Γ  has all powers of  : 

 

1

ˆ ,m m

m





  Ω Ω Ω  

and Ω̂  is an analytic function of  . From the theory 

of Linear Algebra it is known that the eigenvalues 

Λ̂  of Ω̂  are analytic functions of   and are given 

by 

 

1

ˆ ,m m

m





  Λ Λ Λ  

where Λ̂  and Λ  are the diagonal matrices contain-

ing eigenvalues of Ω  and Ω̂  respectively. By the 

same argument, it is possible to prove that V̂  and 

hence R̂  are analytic matrices too. Therefore, the 

representation 

   1

0

n n

n






  R R  

holds. Substituting this formula into (12) and equat-

ing the terms in front of the same powers of  , we 

derive 

       
,n n n n  R Λ ΛR Λ G  

where  

   

        

1

1 1
1

.

n n

n k n k k n k
k



   


  

 

G V Ω V

Λ R R V Ω V
. 

Therefore 

    diag ,n n Λ G  
 

 

,
.

0,

n
ij

n
ij i j

G
i j

i j


 

   




R  



Известия вузов России. Радиоэлектроника. 2020. Т. 23, № 3. С. 6–24 

Journal of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 3, pp. 6–24 

 

23 Application of the Non-Hermitian Singular Spectrum Analysis  

to the Exponential Retrieval Problem 

References 

1. Burg J. Maximum Entropy Spectrum Analysis. 

Proc. 37th annual international meeting of the society of 

the exploration geophysicists, International Meeting of 

the Exploration Geophysicists. Modern Spectrum Analy-

sis. Ed. by D. G. Childers. Oklahoma City, Okla. Pisca-

taway, IEEE Press, 1978 (1967), pp. 42‒48. 

2. Schmidt R. Multiple Emitter Location and Signal 

Parameter Estimation. IEEE Transactions on Antennas 

and Propagation. 1986, vol. 34, no. 3, pp. 276‒280. doi: 

10.1109/TAP.1986.1143830 

3. Tufts D., Kumaresan R. Singular Value Decomposi-

tion and Improved Frequency Estimation Using Linear 

Prediction. IEEE Transactions on Acoustics, Speech and 

Signal Processing. 1982, vol. 30, iss. 4, pp. 671‒675. doi: 

10.1109/TASSP.1982.1163927 

4. Kay S. Modern Spectral Estimation: Theory and Ap-

plication. Englewood Cliffs, NJ, Prentice-Hall, 1988, 543 p. 

5. Roy R., Kailath T. ESPRIT ‒ Estimation of Signal Pa-

rameters via Rotational Invariance Techniques. IEEE 

Transactions on Acoustics, Speech and Signal Pro-

cessing. 1989, vol. 37, iss. 7, pp. 984‒995. doi: 

10.1109/29.32276 

6. Hua Y., Sarkar T. Matrix Pencil Method for Esti-

mating Parameters of Exponentially Damped/Undamped 

Sinusoids in Noise. IEEE Transactions on Acoustics, 

Speech and Signal Processing. 1990, vol. 38, iss. 5,  

pp. 814‒824. doi: 10.1109/29.56027 

7. Kumaresan R. On the Zeros of the Linear Predic-

tion-Error Filter for Deterministic Signals. IEEE Transac-

tions on Acoustics, Speech and Signal Processing.  

1983, vol. 31, iss. 1, pp. 217‒220. doi: 

10.1109/TASSP.1983.1164021 

8. Van Der Veen A., Deprettere E., Swindlehurst A. 

Subspace Based Signal Analysis Using Singular Value 

Decomposition. Proc. of the IEEE. 1993, vol. 81, iss. 9, 

pp. 1277‒1308. doi: 10.1109/5.237536 

9. Golub G. H., Loan C. F. V. Matrix Computations. 4th 
ed. Baltimore, Maryland, The John Hopkins University 

Press, 2013, 784 p. 

10. Buhren M., Pesavento M., Bohme J. A New Ap-

proach to Array Interpolation by Generation of Arti Cial 

Shift Invariances: interpolated ESPRIT. Proc. IEEE Int. 

Conf. Acoust., Speech and Signal Processing (ICASSP). 

2003, vol. 5. doi: 10.1109/ICASSP.2003.1199904 

11. Marchi S. D. On Computing the Factors of Gener-

alized Vandermonde Determinants. Recent Advances in 

Applied and Theoretical Mathematics. 2000, pp. 140‒144. 

12. Heineman E. R. Generalized Vandermonde De-

terminants. Transactions of the American Mathematical 

Society. 1929, vol. 31, no. 3, pp. 464‒476. 

13. Akaike H. A New Look at the Statistical Model Iden-

tification. IEEE Transactions on Automatic Control. 1974,  

vol. 19, iss. 6, pp. 716‒723. doi: 10.1109/TAC.1974.1100705 

14. Schwartz G. Estimating the dimension of a mod-

el. Annals of Statistics. 1978, vol. 6, no. 2, pp. 461‒464. 

15. Rissanen J. Modeling by Shortest Data Descrip-

tion. Automatica. 1978, vol. 14, pp. 465‒471. 

16. Wax M., Kailath T. Detection of Signals by Infor-

mation Theoretic Criteria. IEEE Transactions on Acoustics 

Speech and Signal Processing. 1985, vol. ASSP-33, no. 2, 

pp. 387‒392. doi: 10.1109/TASSP.1985.1164557 

17. Zhao L. C., Krishnaiah P. R., Bai Z. D. On Detec-

tion of the Number of Signals in Presence of White 

Noise. J. of Multivariate Analysis. 1986, vol. 20, iss. 1, 

pp. 1‒25. doi: 10.1016/0047-259X(86)90017-5 

18. Fuchs J. Estimating the Number of Sinusoids in 

Aditive White Noise. IEEE Transactions on Acoustics, 

Speech and Signal Processing. 1998, vol. 36, iss. 12, 

pp. 1846‒1853. doi: 10.1109/29.9029 

19. Badeau R., David B., Richard G. Selecting the 

Modeling Order for the ESPRIT High Resolution Method: 

an Alternative Approach. Proc. IEEE Int. Conf. Acoust., 

Speech and Signal Processing (ICASSP). Montreal, Cana-

da, 1721 May 2004. Piscataway, IEEE, 2004, vol. II,  

pp. 1025‒1028. doi: 10.1109/ICASSP.2004.1326435 

20. Kumaresan R., Tufts D. Estimating the Parame-

ters of Exponentially Damped Sinusoids and Pole-Zero 

Modeling in Noise. IEEE Transactions on Acoustics, 

Speech and Signal Processing. 1982, vol. 30, iss. 6,  

pp. 833‒840. doi: 10.1109/TASSP.1982.1163974 

21. Tretter S. Estimating the Frequency of a Noisy 

Sinusoid by Linear Regression. IEEE Transactions on In-

formation Theory. 1985, vol. 31, iss. 6, pp. 832‒835. doi: 

10.1109/TIT.1985.1057115 

22. Stoica P., Moses R. L., Friedlander B., Soderstrom T. 

Maximum likelihood estimation of the parameters of mul-

tiple sinusoids from noisy measurements. IEEE Transactions 

on Acoustics, Speech and Signal Processing. 1989, vol. 37, 

iss. 3, pp. 378‒392. doi: 10.1109/29.21705 

23. Kay S. A Fast and Accurate Single Frequency Es-

timator. IEEE Transactions on Acoustics, Speech and 

Signal Processing. 1989, vol. 37, iss. 12, pp. 1987‒1990. 

doi: 10.1109/29.45547 

24. Stoica P., Moses R. Spectral Analysis of Signals. 

Prentis-Hall, Upper Saddle River, NJ, 2005, 452 p. 

25. Cedervall M., Stoica P., Moses R. Mode-Type Algo-

rithm for Estimating Damped, Undamped, or Explosive 

Modes. Circuits, Systems and Signal Processing. 1997,  

vol. 16, iss. 3, pp. 349‒362. doi: 10.1109/ACSSC.1995.540870 

26. So H., Chan K., Chan Y., Ho K. Linear Prediction 

Approach for Efficient Frequency Estimation of Multiple 

Real Sinusoids: Algorithms and Analyses. IEEE Transac-

tions on Signal Processing. 2005, vol. 53, iss. 7,  

pp. 2290‒2305. doi: 10.1109/TSP.2005.849154 

27. Qian F., Leung S., Zhu Y., Wong W., Pao D., Lau W. 

Damped Sinusoidal Signals Parameter Estimation in Fre-

quency Domain. Signal Processing. 2012, vol. 92, iss. 2, 

pp. 381‒391. doi: 10.1016/j.sigpro.2011.08.003 

28. Li T.-H. Time Series with Mixed Spectra. CRC 

Press, 2014, 680 pp. 



Известия вузов России. Радиоэлектроника. 2020. Т. 23, № 3. С. 6–24 

Journal of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 3, pp. 6–24 

 

24 Application of the Non-Hermitian Singular Spectrum Analysis  

to the Exponential Retrieval Problem 

29. Zhao S., Loparo K. Forward and Backward Ex-

tended Prony Method for Complex Exponential Signals 

with/without Additive Noise. Digital Signal Processing. 

2019, vol. 86, pp. 42‒54. doi: 10.1016/j.dsp.2018.12.012 

30. Stewart G. W. Perturbation Theory for the Singu-

lar Value Decomposition. SVD and Signal Processing, II: 

Algorithms, Analysis and Applications. 1991, pp. 99‒109. 

31. Li F., Vaccaro R. J. Performance Degradation of 

DOA Estimators Due to Unknown Noise Fields. IEEE 

Transactions on Signal Processing. 1992, vol. 40, iss. 3, 

pp. 686‒690. doi: 10.1109/78.120813 

32. Broomhead D. S., King G. P. Extracting Qualita-

tive Dynamics from Experimental Data. Physica D. 1986, 

vol. 20, iss. 2‒3, pp. 217‒236. doi: 10.1016/0167-

2789(86)90031-X 

33. Vautard R., Ghil M. Singular-Spectrum Analysis in 

Nonlinear Dynamics, with Applications to Paleoclimatic 

Time Series. Physica D. 1989, vol. 35, iss. 3, pp. 395‒424. 

doi: 10.1016/0167-2789(89)90077-8 

34. Ghil M., Vautard R. Interdecadal Oscillations and 

the Warming Trend in Global Temperature Time Series. 

Nature. 1991, vol. 350, pp. 324‒327. 

35. Allen M., Read P., Smith L. Temperature Time Se-

ries. Nature. 1992, vol. 355, p. 686. 

36. Allen M., Read P., Smith L. Temperature Oscilla-

tion. Nature. 1992, vol. 359, p. 679. 

37. Yiou P., Sornette D., Ghil M. Data-Adaptive Wavelets 

and Multi-Scale SSA. Physica D. 2000, vol. 142, pp. 254‒290. 

doi: 10.1016/S0167-2789(00)00045-2 

38. Varadi F., Pap J. M., Ulrich R. K., Bertello L., Hen-

ney C. J. Searching for Signal in Noise by Random-Lag 

Singular Spectrum Analysis. The Astronomical J. 1999, 

vol. 526, pp. 1052‒1061. 

39. Golyandina N., Shlemov A. Variations of Singular 

Spectrum Analysis for Separability Improvement: Non-

orthogonal Decompositions of Time Series. Statistical 

Interface. 2014, vol. 8, iss. 3, pp. 277‒294. doi: 

10.4310/SII.2015.v8.n3.a3 

40. Goljandina N., Nekrutkin V., Zhigljavsky A. Analy-

sis of Time Series Structure: SSA and related techniques. 

London, Chapman and Hall, 2001, 320 p. 

41. Fowler M. Phase-Based Frequency Estimation: A 

Review. Digital Signal Processing. 2002, vol. 12, iss. 4,  

pp. 590‒615. doi: 10.1006/dspr.2001.0415 

42. Golub G., Milanfar P., Varah J. A Stable Numerical 

Method for Inverting Shape from Moments. SIAM Journal 

on Scientific Computing. 1999, vol. 21, iss. 4, pp. 1222‒1243. 

doi: 10.1137/s1064827597328315 

43. Kundu D., Mitra A. Estimating the Parameters of 

Exponentially Damped/Undamped Sinusoids in Noise: A 

Non-Iterative Approach. Signal Processing. 1995, vol. 46, 

iss. 3, pp. 363‒368. doi: 10.1016/0165-1684(95)00094-6 

44. Avdonin S., Bulanova A., Nicolsky D. Boundary 

Control Approach to the Spectral Estimation Problem. 

The Case of Simple Poles. Sampling Theory in Signal and 

Image Processing. 2009, vol. 8, iss. 3, pp. 225‒248. 

Information about the authors 

Dmitry J. Nicolsky, Interdisciplinary Ph.D. from the University of Alaska Fairbanks (2007), a Research Assis-

tant Professor (2013). The author of more than 40 scientific publications. Area of expertise: understanding of cou-

pled ground-atmosphere-ocean processes in the Arctic and numerical solution of partial differential equations. 

Address: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, PO Box 757320, Fairbanks, AK 99775, USA 

E-mail: djnicolsky@alaska.edu 

https://orcid.org/0000-0001-9866-1285 

Gennadiy S. Tipenko, Cand. Sci. (Phys.-Math.) (1985), Assotiate Professor (1994), Leading Researcher in the In-

stitute of Environmental Geoscience Russian Academy of Sciences. The author of more than 40 scientific publications. 

Area of expertise: spectral theory of differential operators; numerical modeling in geocryology problems. 

Address: Institute of Environmental Geoscience Russian Academy of Sciences, 13 Ulansky Pereulok, PO Box 145, 

Moscow 101000, Russia 

E-mail: gstipenko@mail.ru 

https://orcid.org/0000-0003-1137-5695 


