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Abstract 

Introduction. Today, many research endeavors are devoted to the miniaturization of microwave sources. One of 

the promising approaches is the use of magnetic nanostructures (spintronics elements), providing a wide range 

of frequency tuning and low power consumption. The main disadvantage of spintronics generators (spin-transfer 

nanoscillators ‒ STNO) is a low output power of generated oscillations (tens of nanowatts and less). A possible 

solution is to sum up the power of many STNOs in a mutual synchronization mode. 

Aim. The investigation of noise properties of two connected STNOs with identical and non-identical parameters 

in a phase synchronization mode. 

Materials and methods. A model was developed of two STNOs interconnected by spin waves taking into account 

thermal noises. Spectral power densities of the amplitude and phase noise were obtained by the method of 

effective linearization. 

Results. Dependencies were obtained in a general form for attenuation coefficients of the amplitude and phase 

fluctuations of noise sources for each STNO. Three cases of synchronization were considered: completely identi-

cal STNOs, two identical STNOs but with different oscillation frequencies, and two non-identical STNOs, differing 

in an allowance of self-excitation by frequencies and amplitudes of the oscillations. It was possible to obtain a 

gain in the amplitude and phase noise for two identical STNOs. In this case, an increase in the allowance of self-

excitation led to a decrease in the level of phase and amplitude noise. 

Conclusion. This analysis of the attenuation coefficients for non-identical STNOs demonstrates the possibility of 

improving the noise properties of each of the generators. In this case, the best noise value is obtained for an 

STNO with greater stability in a stand-alone mode. 
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Introduction. Oscillation sources of microwave fre-

quency range devices are based on either of the follow-

ing: lumped elements (capacitors and inductors), delay 

lines, resonators on surface acoustic waves (SAWs), 

spin-wave devices, dielectric (including ceramic) cir- 

cuits, waveguides, or other resonators [1]. An important 

task in the use of self-oscillators is to control their fre-

quency stability. In schemes with lumped elements, this 

is most often solved by using varicaps [1]. In spin-wave 

devices, the dependence of the frequency of the 
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ferromagnetic resonance on the magnitude of the con-

stant magnetic field, which can easily change under the 

influence of direct current, is used. 

Recently, special attention has been given to solid 

state physics, where nanoscale spin-wave  

devices ‒ "spintronics" devices ‒ are studied. Such de-

vices are spin-transfer nanoscillators (STNO), which 

are multilayer nanostructures, most often cylindrical, 

made up of alternating magnetic and nonmagnetic lay-

ers [2–7]. Nowadays, using various configurations of 

nanolayers, it has become possible to achieve genera-

tion frequencies of more than 40 GHz [2]. The ad-

vantages of STNO over other well-known self-oscil-

lators are: small size, wide frequency range: from hun-

dreds of megahertz to tens of gigahertz with relative 

frequency tuning over an octave, integrability with the 

CMOS process, small operating voltages and currents 

(less than 0.3 V), short transition time process (nano-

second scale), and an extended section of the fre-

quency’s linear dependence on the control of the ex-

ternal direct current or external magnetic field. Al-

ready, options are proposed for using STNOs as mi-

crowave signal detectors [8] and in memory devices 

[9]. The possibility of generating radiation in the te-

rahertz range is actively being studied [10, 11]. Note 

that an important property of STNO is non-isochro-

nism, the dependence of the oscillation frequency on 

the amplitude. 

One of the main characteristics of any oscillator is 

the level of phase noise. A low noise level of the os-

cillator is a prerequisite for the development of many 

radar and radio transmitting devices. For STNOs, this, 

along with a low output power, is the main drawback 

that limits their practical application. One way to re-

duce phase noise is to synchronize with an external 

force or mutually synchronize several oscillators. As 

an external force, external harmonic influence (EHI) 

or EHI usually acts in combination with a phase 

locked loop [12‒15]. The purpose of synchronization 

is to impose the stability of a reference non-tunable 

oscillator on a frequency tunable oscillator. In addi-

tion, the synchronization systems studied in this work 

are used in communication, radar and radio navigation 

technology, control, measuring complexes, especially 

in frequency synthesizers, complex signal synthesiz-

ers, signal demodulators with angular modulation, sig-

nal phase and frequency meters, signal tracking de-

vices of carrier frequencies of received signals, and in-

clock synchronization devices. Despite the large num-

ber of works on STNOs, the theoretical noise proper-

ties of interconnected STNO have not been previously 

studied. In this paper, we study the effect of synchro-

nization of two coupled STNOs in phase synchroniza-

tion mode on amplitude and phase noise. 

Mathematical Model of Two Connected 

STNOs. We assume that STNOs are connected 

through a common ferromagnetic layer where spin 

waves propagate. The structure of coupled STNOs has 

been studied in a number of works (see, for example, 

[2]) and is not given here. Let us consider an assembly 

of two complex equations describing the dynamics of 

two connected STNOs [2]: 
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where  1, 2ic i   are the complex amplitudes of the 

spin waves of the first and second STNO; 

2
0i i i iN c     is the dependence of the oscilla-

tion frequency on the amplitude ( 0i  is the frequency 

of the ferromagnetic resonance of the ith STNO;  

iN  is the nonisochronism coefficient);  2
i iс 

   
2

GГ 1i i i i iQ с         ( Gi i   ;   is the 

Gilbert damping constant; th,i i iI I   is the self-ex-

citation factor (supercriticality); iI  is the current through 

the ith STNO and th,iI  is the critical current at which in 

the unconnected case oscillations arise in the STNO; iQ  

is the phenomenological parameter [2]); i  is the con-

nection coefficient of two STNOs; i  is the phase delay 

in the synchronization system;  in t  is the additive 

noise addition caused by thermal fluctuations of the fer-

romagnetic material. Search for the solution (1) in the 

form: 

  avexp ,i i iс U j t j t         (2) 

where ,i iU   are the slowly varying amplitude and 

phase of the i-th oscillator, respectively; 

 av 1 2 2      is the average frequency of two 

STNOs. 

The derivative of the complex amplitude (2) has 

the form: 
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Substitute (3) and (2) in (1). We get an assembly 

of two complex equations: 
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 (4) 

We can now move from (4) to 4 valid equations 

for the amplitude and phase of each generator: 
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We calculate the stationary values of the ampli-

tudes and phases of the oscillators 0
1U , 0

2U , 0
1 , 0

2.  

To do this, we equate the derivatives in (5) to zero. We 

get: 
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 (6) 

where 1 4, ,f f  are nonlinear functions of stationary 

states 0
1U , 0

2U , 0
1 , 0

2.  We can now move from (6) 

to the equations with the stationary phase difference 

1 2     since its value determines the stationary 

amplitudes of STNO oscillations: 
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We can now move to the equations for small de-

viations 1u , 2u , 1 , 2  with respect to the sta-

ble stationary mode. We get an assembly of equations 

in the following form: 
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Using the spectral method ,
d

j
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 we can now 

move to a linear inhomogeneous system of equations: 
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where ,
kiU i kf f U    ;

ki i kf f     1 4,i   

1 4.k   

Assembly (7) can be specified by the Carmer 

method in the following form: 
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where  ij   are the corresponding determinants of 

an assembly (7). In particular, 
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And the determinants  ij   are searched by re-

placing the i-th column with a column of constant 

terms, for example, 
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Next, we can now move from (8) to spectral den-

sities 
1,2 1,2

,uS S   of amplitude and phase noises, re-

spectively: 
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 (9) 

Using the obtained expressions (9), it is possible 

to quantitatively study the level of spectral power den-

sities of the amplitude and phase noise of two coupled 

STNOs. 

Noise properties of two identical STNOs. Let us 

consider the case of two absolutely identical STNOs 

   
2 2

0 0
fm1 1 1 fm2 2 2 0;N U N U       fm1 fm2,   

are the ferromagnetic resonance frequencies. 

G1 G2;    1 2;    1 2;Q Q  1 2.   In this 

case, the time delay will be considered equal to zero 

1 2 0.     In general, the effect of phase delay re-

duces to the frequency of the obtained dependences. 

The amplitudes and phases of the STNO in this case 

will be equal to 0 0
1 2 ,U U  0 0.   

In this case, we can now move to one equation for 

determining the stationary amplitude and drop sub-

scripts 1 and 2: 

     
2

0 0 0
G0 1U Q U U
 

          .  

Then the stationary value of the amplitude will 

have the form: 

 0 G

1

U
Q


  




 
.  

The oscillation frequency in this case will be equal 

to: 

 G
0 fm

1

N
Q


  


   

 
.  

If 0  the frequency and amplitude of the 

oscillations of the coupled STNOs tend toward the fre-

quency and amplitude of the oscillations of the self-

regulating STNO. Let the STNO parameters be equal 

[2]: 10.48 GHz;
2

N



 fm1 12.41GHz;

2





 2;   

0.66;Q   61.5 GHz A;   0.01;   

G 0.1241GHz.
2





 

The stationary values of the amplitude and fre-

quency of oscillations, in this case, will depend on the 

margin of self-excitation   and the connection coef-

ficient   of two generators at 0 18.84 GHz.
2





 The 

dependence  ,U    is shown in Fig. 1. 
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Let us compare the obtained spectral characteristics 

of the amplitude and phase noises with the characteris-

tics of the self-regulating STNO. We will use the value 

of the coherence as a parameter  . The peculiarity of 

the mutual synchronization assembly is the phenome-

non of mutual assistance for the setting-in of oscilla-

tions. In this case, even with a margin of self-excitation 

less than unity, a stable state of oscillations is possible. 

A physical limit is the value of the coupling coefficient; 

it should be no more than G  because the maximum 

realistically attainable values of the self-excitation mar-

gin are approximately ≈3‒4. 

The dependence of the amplitude and phase noise 

at different values of the connection coefficient   as 

well as two values of the self-excitation margin ( 2   

and 4  ) constructed according to formulas (11) are 

shown in Fig. 2 

According to Fig. 2, the mutual synchronization 

of an ensemble of two STNOs leads to a decrease in 

the amplitude and phase noise of each of the oscilla-

tors. Moreover, an increase in the connection coeffi-

cient between STNOs leads to a decrease in the am-

plitude and phase noise. Also, an increase in the con-

nection coefficient leads to an increase in the field of 

offsets from the frequency of the STNO oscillations, 

at which a gain in the amplitude and phase noise is 

ensured. The spectral density of phase noise far ex-

ceeds the spectral density of amplitude noise. This is 

typical for all self-excited oscillators. 

An analysis of the expressions obtained shows that 

in order to improve the noisiness of STNOs, it is neces-

sary to increase the self-excitation margin , to reduce 

losses in the equivalent oscillatory system G , and to 

reduce the nonisochronism coefficient N. Nonisochro-

nism, being a mechanism for changing the oscillation 

frequency, leads to a significant deterioration in noisi-

ness. However, a decrease N  leads to a decrease in the 

possible frequency range of the oscillator.  

The obtained calculations of amplitude and phase 

noise make it possible to design a system of synchro-

nized STNOs with a minimum level of phase and am-

plitude noise. 

Noisiness of two non-identical STNOs. Let us  

consider the case of synchronization of two non- 



 

Fig. 1. Dependence of the stationary amplitude of oscillations 

at different values of the self-excitation margin 
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Fig. 2. Dependence of amplitude and phase noise at different values of the connection coefficient Ω and two values of the 
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identical STNOs that differ in the self-excitation mar- 

gin. For such an assembly, a gain in the phase noise  

level is obtained for both STNOs. In this case, the best 

noise value is achieved for the STNO which has a large 

self-excitation margin, in accordance with Fig. 3. 

Conclusion. The dependences are obtained in a 

general form for each STNO’s noise source’s attenu-

ation coefficients of the amplitude and phase fluctua-

tions. Two cases of synchronization were  

considered ‒ completely identical and non-identical 

STNOs, differing by a self-excitation margin, fre-

quencies, and amplitudes of oscillations. It is possible 

to obtain a gain in the level of amplitude and phase 

noise for two identical STNOs. In this case, an in-

crease in the allowance of self-excitation leads to a de-

crease in the level of phase and amplitude noise. Non-

isochronism, in its turn, leads to an increase in the 

level of amplitude and phase noise. In the second case, 

it is possible to obtain the best value of phase and am-

plitude noise. At the same time, in order to obtain a 

less noisy STNO, it is necessary to increase the con-

nection coefficient of two STNOs and to increase the 

frequency mismatch of two STNOs while remaining 

within the system synchronism line. This is because 

the control action to STNOs in this model depends on 

the frequency difference between the generators. With 

equal frequencies, such an effect is minimal in accord-

ance with the shortened equations. This analysis of at-

tenuation coefficients for non-identical STNOs 

demonstrates the possibility of improving the noise 

properties of each of the generators. In this case, the 

best noise value is obtained for STNOs with greater 

stability in stand-alone mode. 
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