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Abstract

Introduction. Perfect polyphase unimodular sequences, i.e. sequences with ideal periodic autocorrelation and
single ampli-tude of symbols are widely used in modern radio communications and radars. Among them a spe-
cial place is occupied by perfect ternary sequences (PTSs) with elements {-1, 0, 1}. PTSs are quite numerous and
their length in comparison with perfect binary sequences is not limited from above. There is a well-known re-
view of PTS families undertaken by Fan and Darnell in 1996. However, over the past two decades numerous
new PTS families have been discovered. Connections between PTSs and circulant weighing matrices have been
es-tablished and certain theorems on the existence of PTS existence for certain lengths have also been ob-
tained. Therefore, there is a need for a new modern review of existing PTSs.

Objective. This review of existing PTSs is intended for developers of radio electronic systems using perfect se-
guences.

Materials and methods. Domestic and foreign sources of information (books, journal papers, conference pro-
ceedings, patents) were considered and analysed. A Web search was carried out based on keywords using re-
sources of Yandex and Google, as well as in digital electronic libraries (Russian State Library (RSL), IEEE Xplore
Digital Library), conference materials (Digital Signal Processing and its Application (DSPA), Sequences and their
Applications (SETA), etc.).

Results. In addition to the matter of collating an informational bibliography, the review shows the relationship
be-tween PTSs obtained at different times and their connection with circulant weighing matrices. The review al-
so describes the generators of known PTS families (Ipatov, Hoholdt-Justensen, etc.).

Conclusion. A retrospective review of PTSs is herein presented and the generators of certain known PTS fami-
lies have been considered. The results of the study are relevant for use in modern radio communications and
radar sys-tems and in CW and LPI radars in particular.

Key words: radio signals, perfect ternary sequences, sequence generators

For citation: Krengel E. |. Retrospective Review of Perfect Ternary Sequences and their Generators. Journal of
the Russian Universities. Radioelectronics. 2019, vol. 22, no. 4, pp. 6-17. doi: 10.32603/1993-8985-2019-22-4-6-17

Conflict of interest. Author declares no conflict of interest.

Received 24.06.2019; accepted 03.07.2019; published online 27.09.2019

© Krengel E. ., 2019

KoHTeHT goctyneH no nnueHsun Creative Commons Attribution 4.0 License @ @
6 This work is licensed under a Creative Commons Attribution 4.0 License Br



H3BecTus By3oB Poccun. Pagnosnexrponnka. 2019. T. 22, Ne 4. C. 6-17

OB3OPHASI CTATBS Journal of the Russian Universities. Radioelectronics. 2019, vol. 22, no. 4, pp. 6-17

PapnoTexHnyeckue cpeicTBa Nepefayu, npueMa H 00padoTKH CUTHAJIOB
Radio electronic facilities for signal transmission, reception and processing

REVIEW ARTICLE
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AHHOTauuA

BBepeHue. aeansHble MHOrodasHble YHUMOAYNSPHbIE NOC/TeA0BaTENLHOCTY, T. €. NocnefoBaTeIbHOCTA C
naeanbHOM Nepuoanyeckor asTokoppensumern n eanHNYHOM aMnANTYA0M CMMBOJOB, LUMPOKO UCMOb3YHTCA
B COBPEMEHHOI paAnocBsa3n 1 pajmonokaumm. Ocoboe MecTo cpeAn HUX 3aHUMAIOT UAeanbHble TPOUUHble
nocneaoBatenbHoctTn (UTI) c anemeHTamm {-1, 0, 1}. UTIN AOCTaTOYHO MHOIOYUC/IEHHbI, @ UX A/JVHA B OTAMNYMeE
OT MAeaNbHbIX ABOWNYHBIX MOC/ef0BaTeNbLHOCTEN He orpaHMyYeHa ceepxy. VM3secteH 063op UTTI, caenaHHbIn
®aHoM 1 JapHennom B 1996 r. OpHako 3a npowejline ABa AeCATUAeTUs 6blIN OTKPbITbl HOBble MHOMOYMC-
NeHHble cemelictea UTI, ycTaHoBAEHbI CBA3N Mexay VT 1 UMpKYASHTHBIMW B3BELLIEHHbIMW MaTpuLaMu, no-
NlyyeHbl Teopembl 0 cylectsoBaHUM UTI ¢ onpegeneHHbIMY napaMeTpamu. o3ToMy BO3HMKAA NOTPebHOCTL
B HOBOM COBPeMEeHHOM 0630pe 1N3BeCTHbIX Ha cerogHs UTT.

Lienb pa6otbl. O630p coBpemeHHbIX UTI npegHasHaveH 415 pa3paboTyunMKOB pPaAMO3/1eKTPOHHbIX CUCTEM, B
KOTOPbIX NCMONb3YOTCA NAeallbHble NOCNeA0BaTeIbHOCTY.

MaTepuansl n meToAbl. PacCMOTPEeHbI 1 MPOaHaNM3MpPOBaHbl OTeYeCTBEHHbIE N 3apy6exXHble NCTOYHUKN NH-
dopmaLmm (KHUTW, XypHaNbHble CTaTby, TPYAbl KOHGepeHL M, naTeHTbl). Monck ocyLecTBAancs B cetn VH-
TepHeTe No KAYEeBbIM C/I0BaM C UCMONb30BaHMeM VIHTepHeT-pecypcos Yandex 1 Google, a Takxe B LiMppoBbIX
3NeKTPOHHbIX 6ubnnotekax (Poccuiickoin MocypapcrteeHHol 6ubnmnoteke (PIb), IEEE Xplore Digital Library), B
MaTepmanax koHpepeHuuii (Undposas ObpaboTtka CurHanoB u ee MpumeHeHne (DSPA), Sequences and Their
Applica-tions (SETA), n ap.).

PesynbTaTtbl. Hapsagy c pelleHneM NHPopMaLmMoHHO-b6mbanorpadunyeckor 3aja4vm B 063ope nokasaHa B3aMMo-
CBA3b MO/lyYeHHbIX B pa3Hoe Bpems VT, nx 3kBMBaNeHTHOCTb LMPKYASHTHBIM B3BELLeHHbIM MaTpuLaM, a Takxe
paccMOTpeHbl YCTPOKCTBA FreHepaLummn n3BecTHbIX cemelicTs UTI (MnaToBa, Xoxonara-AxacteceHa v gp.).
3akntoueHue. lNpeactaBneH peTpocnekTnBHbIN 0630p UTI; paccMOTpeHbl reHepaTopbl M3BECTHbLIX CEMENCTB
WTTI. Pe3ynbTtaThl UccnefoBaHUA akTyasbHbl ANA MPUMEHEHUS B COBPEMEHHbIX CUCTEMAax PaAnocBaAsn 1 pa-
Anonokaunu, B yactHoctn B CW- u LPI-pagapax.

KnroueBble cnioBa: paaniocurHabl, naeanbHble TPOUYHbIE MOC1e40BaTeNbHOCTY, FeHepaTopbl NoUIeA0BaTe/IbHOCTEN
Ansa yntuposaHus: KpeHrenb E. . PeTpocnekTnBHbLIA 0630p TPOUYHbIX NOC/Ie40BaTeNbHOCTEN C NAeaIbHOM

nepuoanYeckoin aBTokoppenaumein n ycTpolicTe Ux reHepauum // W3B. By30B Poccun. PasnosnekTpoHuKa.
2019.T. 22, Ne 4. C. 6-17. doi: 10.32603/1993-8985-2019-22-4-6-17

KOoH$NMKT nHTepecos. ABTOp 3asB/seT 06 OTCYTCTBUM KOHGINKTA MHTEPeCoB.

CraTtbs nocTynuna B pegakumto 24.06.2019; npuHsaTa K nybamkaumm nocie peLieHsvpoBaHmsa 03.07.2019; onybnvkoBaHa
OHnaiH 27.09.2019

Introduction. Perfect polyphase unimodular se-
guences, i.e. sequences with an ideal periodic auto-
correlation and unit amplitude of symbols are widely
used in modern radio communications and radars [1,
2, 3, 4]. Their application in continuous wave radars
(CW-radars) [3] and in low probability intercept ra-

dars [4] is the most promising. The most well-known
polyphase sequences are the Frank, Zadoff-Chu and
Milewski perfect polyphase sequences and their nu-
merous modifications [2, 3]. However, the general
property of all these sequences is an increase in alpha-
bet volume with an increase of their length.
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At the same time, there are various families of per-
fect polyphase sequences with zeroes whose alphabet
volume does not depend on their length. The charge for
this is a peak factor greater than one, causing energy
losses in the receiver. The 4-phase general Lee se-

quences [5] with length (pm +1), where p>2 isa

prime; m>1 is an integer, and (pm +1) = 2mod 4; the
8-phase Liike with
(p" —1)/(pm ~1)= 4mod8, where p>2 is a
prime, n>2 is an integer, m>1 is an integer , and
min [6] (term min means, that m is a factor of n); 4-
phase  Schotten-Liikke sequence with length

(p" —1)/(pm ~1), where p=4t+1 is a prime,
n>1 and m are integers, min and n=2m [7]; and
also 4- and 8-phase sequences [8] with length

N =2(p" —1)/(pm ~1), where p>2 is a prime,
n=mk, m=>L1is an integer, k >1 is an integer, and

4(p™-1) o1

A special place among them is occupied by the
perfect ternary sequences (PTSs) with elements
{-1, 0, 1}. These are in fact binary alphabet sequenc-
es {-1, 1}, but with zero symbols in some positions.
However, there are essential differences. First, their
length is not limited from above in comparison with
perfect binary sequences. Secondly, these sequences
are numerous, and their peak factors converge to one
with an increase in their length. Thirdly, the hard-
ware implementation of PTS generators is simple,
unlike the other generators of the perfect polyphaser
sequences with an alphabet volume greater than
three. Finally, PTSs can compensate for an absence
of perfect binary sequences in a continuous transmis-
sion regime. To this end, Levanon and Freedman
proposed changing every other zero in the periodical-
ly transmitted PTS with ones and minus ones [9].
The initial PTS is used as a reference sequence in a
correlator, and integration time is set to be equal to
an even number of sequence periods. In this case the
peak factor is equal to one, and the values of correla-
tor side-lobes are zero. As a result, the price for mis-
matched filtering is energy loss in a receiver, but
these losses converge to zero with an increase in the
PTS length.

sequences length

REVIEW ARTICLE

Many papers and books are devoted to the design
of PTSs and the study of their properties. Notable
examples are Ipatov’s monograph [1] devoted to pe-
riodical discrete signals with optimal correlation
properties (1991) and the handbook [2] on sequence
design by Fan and Darnell (1996) in which they con-
sidered the PTS families known at the time. During
past two decades, numerous new PTS families have
been discovered, a number of theorems concerning
their existence have been formulated and connections
established between them and circulate weighing ma-
trices CW (N, K) order of N (which is equal to the

sequence length) and the weight of K.

In the light of the foregoing and considering the
increased interest in PTSs, this paper presents a brief
retrospective review of PTSs and their almost 60
years’ history. The work also considers some con-
structions of the sequence generators.

Perfect ternary sequences (brief review). PTS
history dates back about 60 years. In 1960 Tompkins
generated PTSs with a length of 18 using the exhaus-
tive search method. [5, 10]. Then in 1967 Chang

built PTSs with a length of N = (3" —1)/2 (N is an

odd) based on m-sequences over GF(3). It is worth
mentioning that a similar construction method was
proposed by Green and Kelsch [11]. In 1977 Mo-
harir [12] found the necessary conditions for the PTS
existence and obtained several new sequences using
cyclic difference sets. In 1979 Shedd and Sarwate
built the PTS family with a length of p" -1 (p=2
— prime number) [18] based on the property of corre-
lation identity of two sequences (Sarwate u Purs-
ley [13]) valid for couples of m-sequences with three-
level cross-correlation (Gold [14], Niho [15],
Kasami [16], Helleseth [17]).

Then two PTS systematic constructions with length

(p" —1)/(pm 1), where p is a prime number,
n=mk, m>1 is an integer, and k>3 is an odd
number invented within an interval of several years.
The first construction for p >2 was based on p™ -ary

m-sequences and obtained by Ipatov in 1979 [19].
The second construction for p=2 was obtained by
Hoholdt and Justesen. It was based on Zinger differ-
ence sets [20]. Then Ipatov, Platonov, Samoilov [21]
and Kamaletdinov [22] found other PTSs with the
same parameters (peak factor and length) as the PTSs
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reported in [19]. Later it was shown that the Chang
and the Green-Kelsch PTSs [10, 11] are a subset of
the Ipatov PTSs for p=3;the Hoholdt-Justesen

PTSs [20] correspond to the Shedd-Sarwate PTS for
p=2, m=1 and odd n; and the Moharir PTSs [12]

belong to the Ipatov or the Hoholdt-Justesen. PTSs.
More details are shown in [2].

In subsequent years, after the discovery of new
perfect binary sequences with two-level cross-
correlation (GMW sequences, Kasami power func-
tion sequences, Welch-Gong sequences and hy-
peroval Maschietti sequences [23]), a number of pa-
pers devoted to their cross-correlation properties ap-
peared. In this respect papers [24, 25, 26, 27, 28, 29,
30, 31] deserve a mention since they allowed various
pairs of binary and non-binary sequences with the
three-level cross-correlation to be found, thereby sat-
isfying the condition of the Shedd-Sarwate construc-
tion. As a result, this led to the possibility of building
more PTSs [30].

In 1986, Games [32] built the family of ternary

sequences of a length of (q" —1)/(q —1) (where qis

a prime power) using difference sets and quadrics in
projective geometry. Games proved that the Hoholdt-
Justesen PTSs are the subset of the construction ob-
tained by him. In 1992 Jackson and Wild [33]
showed that the Ipatov PTSs are also the subset of
the Games PTSs. However, there was a question
whether it was possible to generate PTSs for even n
using the construction proposed by Games. This
problem known as the Waterloo problem was re-
solved by Arasu, Dillon, Jungnickel, and Pott in 1995
using the relative difference sets and weighing matri-
ces [34, 35]. As a result, it was proven that it is possible
to build PTSs only for odd n using the constructions
proposed by Games.

Since then the Ipatov PTSs have been reinvented
many times. Lee [5] showed that these PTSs are a subset
of perfect g-ary sequences which were found using mul-

tiplicative characters over GF(p). Then in 1996 Schot-

ten and Liike [7] obtained the same PTSs from w-cyclic
perfect sequences. The Ipatov PTSs for q =3 have been

shown to be a subset of the perfect polyphase sequences
with zeros built by Boztas and Parampalli [36].

At the same time perfect ternary arrays were in-
vestigated; in particular, circular weighing matrices

CW (N, K) with an order of N and weight of K con-

Radio electronic facilities for signal transmission, reception and processing

sisting of elements of the set {—1, 0, 1}. Investigation

of CW(N, K) is of a great importance, since there

is a biunique correspondence between them and
PTSs with a length of N and K non-zero elements.
Detailed reviews of PTAs and CW (N, K) matrices

are contained in papers by Arasu and Dillon [37, 38]
In 1990 Antweiler, Bomer, and Liike proposed a new
method for constructing PTAs and PTSs [39]. To this
end, they used the Kronecker product of known PTSs
and ternary aperiodic perfect arrays. Using this meth-
od and a computer search, they obtained a new PTS of
a length of 33 with an energy efficiency of 0.76.

At the present time, a variety of theorems of ex-
istence and non-existence of CW (N, K) with speci-

fied parameters N and K have been obtained [37, 38].
Using these theorems and a computer search
CW (24, 9), CW (71, 25), CW (87, 49), CW (96, 36),
and CW (142, 100) were found.

Of special interest are combined PTSs produced
using a symbol-by-symbol product of two PTSs with
relatively prime periods or product of the perfect bi-
nary sequence 111-1 of a length of 4 and a PTS of
odd length [1,2]. The method of building of PTSs of
length 4N proposed by Krengel in 2007 [40] should
also be mentioned. According to this method, new
PTSs of a length of 4N can be constructed by mixing
the perfect ternary sequences and ternary sequences
with the odd-perfect auto-correlation of odd length N
and the same number of zeros.

Finally, the most recent construction of PTSs of

odd length N =N;N,was produced by Krengel in
2017 [41, 42]. New PTSs are derived from shift se-
quences of length N; corresponding to m-sequences

of length p" —lover GF(p) and PTSs of odd
length Nowhere p>2 isaprime, n=mk, m>1is
k>3 is an odd,

Ny =(pmk —1)/(pm ~1), and ZNZ‘(pm 1), it is
worth noting that a number of PTSs formed by this
method increases, if extended shift sequences are
used obtained by means of difference balance func-
tions with d-form properties [43, 44].

Perfect ternary sequence generators. In [1]
devices which generate Ipatov PTSs of a length of

(p™k —1)/(pm ~1), p>3 aprime and the Hoholdt-

an integer,
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Justesen’s PTSs of a length of (2™ —1)/(2m 1)

for m>1 and odd k>3 are described in detail.
Moreover, in [1] the Hoholdt-Justesen PTSs are pre-
sented with an application of the trace functions and
transformations that make their hardware implemen-
tation more achievable.
The |Ipatov PTSs

of a length

9={0i}
of N =(p™ -1)/(p™-1) are built in accordance
with the expression:

gi =(-0' \V[Trr?] (of )} 0<i<N,

where y[-] is the multiplicative character of
GF(p™);
n/m-1
Tm(x)= Y xP"
i=0

is the trace of x element of GF(p“) relative to
GF(p™); n=mk; o is the primitive element of

GF(p"), m=>1 k=3 is an odd. It should be re-

called that the double-digit multiplicative character
of GF(q)is an image of the multiplicative group of

GF*(q) of the main field (i.e. all g-1non-zero
field elements) on the set of {-1, 1} kind of

W(S)z(—l)logﬁSWhere 8eGF(q); loggd is the
logarithm of & to the base B; B is the primitive ele-
ment of GF(q). Clearly logg & takes one of the val-
ues of the set of integers {0, 1, 2, ..., q—2}. In the

case of the Ipatov PTSs q=p™, the multiplicative
character is also set to zero for element 6=0.

The block-diagram of the Ipatov PTS generator is
shown in the Fig. 1. The PTS generator consists of
the generator (1) of g-ary m-sequence of length
q€-1 q=p™ m>1 k>3 — odd; converter (2)
making a conversion of input non-zero element (non-
zero element of GF(q)) into the double-digit multi-
plicative character, the value of which is —1 or 1, set-
ting zero symbol (zero element of GF(q)) to zero.

The converter output is connected to the first input of

REVIEW ARTICLE

4

Fig. 1. Block-diagram of Ipatov PTS generator:
1 — g-ary m-sequence generator; 2 — converter; 3 — multiplier;
4 — meander generator.

the multiplier (3), the second input of which is con-
nected to the output of the meander generator (4).
The operating principles and block-diagram of

the generator of g-ary m-sequence of length qk -1is

described in detail in literature (in books by Ipa-
tov [1], Fan and Darnell [2], Golomb and Gong [23],
etc.). The converter which calculates the double-digit
multiplicative character of the Galois field element
can be produced by using various devices. In particu-
lar, devices for the direct calculation of the double-
digit multiplicative character of any non-zero ele-

ment of GF(q) could be used for this purpose [45].

However, such production requires significant re-
sources of hardware and time. Construction of the
converter, on the other hand, could be significantly
simplified using the preliminary derived table of con-

version of non-zero p™ elements Xj into one of the

following symbols {-1, 0, 1}, which is performed
using read-only memory (ROM) as proposed in [1].
The Hoholdt-Justesen PTSs a={a;} of a length

of N=(2n —1)/(2m “1), n=mk, m>1 k>3 —
odd in the interpretation proposed by Ipatov [1] is
given by:

0, Tih(g') =0,
elai (102 |, T () <0

(18)

g =

where e(éS):(—l)Trlm
GF(q) (A, 8eGF(q)); 0<i<N, g=2",

is the additive character of

(k-1)/4 s .7
Z TrnrJ] {é[q(St 1) +l:°|}’ k =1mod 4:
t=1
') (k-3)/4 s
Z Trrrr]] {E_J:q(St 1) +1J|}’ k =1mod 4
t=1
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& is the primitive element GF(qk), s is an integer

number, and (s, k)=1, i. e. the greatest common

factor of s and k is equal one.

Fig. 2 shows the block-diagram of the Hoholdt-
Justesen PTS generator obtained in accordance with the
expressions presented. The generator consists of two
generators of linear sequences, (1) — the generator which

forms the m-sequence {Trr?1 (EJi )} and (2) — the genera-

tor which forms the sequence {d;}, and (3) — the con-
verter which in the case of {Trr?] (E_,i )} # 0 raises the el-

ement Trh (ai) to the power of q—3, then multiplies

it by the d; element formed in the generator (2), and cal-

culates the additive character of the multiplication result.
In the opposite case, the symbol of zero is formed at the
converter output (3). The converter may be obtained by
means of ROM for the reasons of simplification [1].

The generation of PTSs [41] which include the Ipa-
tov PTSs can now be considered as a special case. In

[42] the generator of PTSs of odd length N;N, where

Ny =(p™ -1)/(p™-1); Ny =(p™-1)/(2n) is a
length of some known PTS, p>2 is a prime num-

ber; n=mk; m=>1, h>1 are integers; k >3 is an
odd. The above-mentioned method of PTSs building
is described in detail in [41].

Let d={d;} be a p-ary m-sequence of length

p" —1 with elements
ond
d; :Trln(ocl): > o, n=mk, 0<i<p"-1
j=0

and b={bj} be a g-ary m-sequence of length

p" -1, q=p" with elements

L.
1

Fig. 2. Block-diagram of Hoholdt-Justesen PTS generator:

1 — generator of the m-sequence {Trr'T’1 (éi )}

2 — generator of the sequence {di }; 3 — converter

Radio electronic facilities for signal transmission, reception and processing

n/m-1 . .
> aP” n=mk, 0<i<p"-1,
j=0

where o is a primitive element of GF( p" )

Let us consider the decomposition array of se-

quence d consisting of T :(p” —1)/( p™ —1) rows and

p™ —1 columns. Rows in this array are sequences of

all zeros or cyclic shifts of some short p-ary m-sequence
of length p™ —1. The values of these shifts are defined
by the shift sequence e [23, 24] given as:

00, Tr,?] ((xi ) =0,
logg [Trr?] (o )] i (o) %0,

e={g}=

where 0<i<T, and symbol o points to zero row.

The algorithm of the PTS v construction consists of
four steps:
1. Choose for some PTS a of odd length N, pa-

rameters p>3, prime; m>1, integer; k>3, odd,
(ZNZ)‘( p™ —1) and a primitive polynomial of power
n=km over GF(p).

2. Calculate the shift sequence e of length
N1=(p” —1)/(pm —1) corresponding to p-ary m-

sequence d of length p" —1.

3. Construct the array V of order N; x N, where
i-th row is defined by

L [cafiramon mosts ) o
"ok o,

€ =0,

0Si<N1,

and L° (a) is the operator of the cyclic shift of the
sequence a to the left by s digits.

4. Unfold the array V by columns onto the PTS v
of length N{N».

The analysis shows that if (N7, No)=1, then the

lengths of the PTSs v are equal to lengths of com-
bined PTSs. However, in the case of (Nj, Np)=1

lengths of the obtained PTSs v could be unique. Co-
incidence with the length of the Ipatov sequences is
possible when PTS a is an Ipatov sequence of length

11
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N, = (pf —1)/(pf ~1)where e>3 is an odd
number, f >1is an integer, m=ef. Note that in this
case only one of the PTSs v of length
N =(p" —1)/(pf ~1) thus obtained coincides with

the Ipatov PTS. In all other cases PTSs v differ from
known PTSs, i.e. they are new. In this context, it

should be noted that if the sequence a=1{1}, then the
sequence v coincides with the Ipatov PTS with
length N;. The peak factor of these sequences is
equal to multiplication of the peak factors of PTSs of
lengths N; and Ny. Since N; > Ny, then the peak

factor (and therefore energy losses) of the new se-
quence will be determined by the peak factor of PTS

of length N».
In order to generate the periodic PTSs we will
proceed as follows. We produce & sequence of

length p™ —1 using (pm —1)/N2 periods of the se-
quence a. Then, using expression byt =plb;, the
ternary sequence V' ={v{}, 0<i< p™k _1 produced

by using (pm —1)/N2 periods of the PTS v is de-
scribed as

i+Z; 4 .
vi = (-7 4, , by #0; 0<i<p™ 1,
0, bi =0;
where zj =logghj, bj =0 and z; =¢; for 0<i<T.
Assuming
~1)% 4 :
f(bj)= ()78, b #0; 0<i<p™ -1,
0, bi =0;
we finally obtain v{ =(-1)' f ().

The calculation of f(b;) could be simplified if,

instead of the logarithmic table, we use a table which
assigns a double-digit number to the symbol

b € GF(p™). It has the value 10 if f(lj)=1, the
value 01 if f(b)=-1 and the value 00 if
f(by)=0.

The element ce GF(q), q=p" could be repre-
sented as the sum

12
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Cm_]_Bm_l + Cm_zBm_l +K + Co,
where ¢; e GF(p) and B is the primitive element of

GF(pm). Therefore, for any element ¢ of GF(pm)
we could assign the m-digit p-ary number represent-
ing as (Cm_1, Cm2, K, o). Written in binary this
number consists of [mlog, (p)]digits and equals

(cm_lpm_1+cm_2 p™ ik +co)2. With this in

mind, the mapping table could be produced on the
basis of a programmable read-only memory (PROM)

with the volume p™ x 2, which uses binary form of

the element ¢ of GF(p™) as an address input. As a
result, the converter block will consist of a series-
connected address builder. This will transform m-
digit p-ary representation of elements of GF(q) on
the output of the generator of the g-ary m-sequence in-
to [mlog,(p)]-digit binary numbers, the PROM
with volume gx 2, and the code converter of the dou-
ble-digit binary number into the symbol of ternary
code {~1, 0, 1}. It should be noted that if g = p, then
the address for the PROM is the value of the symbol c.

In this case the address builder is not required.
Fig. 3 shows the block-diagram for the perfect

ternary sequences generator of length N;N,. The
generator contains the series-connected generator 1 of
g-ary m-sequence of length qk -1, q=p", m=>1
and k >3 odd, address builder 2, PROM 3, and code
converter 4 of 2-digit binary code into the symbol of
the ternary code, the multiplier 5, and the meander

generator 6. The output of the code converter is con-
nected to the first input of the multiplier 5; the mean-

2 —» 3

i '

1 6

L 5 | —

Fig. 3. Block-diagram of PTS generator of the length NN, :

1 — generator of the m-sequence with the length qk -1 2-
address builder; 3 — PROM; 4 — code converter; 5 —
multiplier;

6 — meander generator.
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der generator 6 is connected to the second input of
the multiplier.

The combined sequences generator of length
N;N, consists of two generators of PTSs with a

coprime lengths N; and N whose outputs are con-
nected to the inputs of the multiplier. A block-
diagram of the quadruple-length PTS generator of
looks more sophisticated [40]. In this case, PTSs
with length 4N are built on the base of interleaving of
two sequences: the sequence consisting of two peri-
ods of the PTS sequence of odd length N and the al-
most perfect ternary sequence of length 2N having
twice larger number of zeros in comparison with the
PTS with length N.

The generator will be constructed in accordance
with the following: 1) — an almost perfect ternary se-
quence is a concatenation of an odd-perfect ternary
sequence of length N and its inversion; and 2) — the
result of multiplication of elements of an odd-perfect
sequence of odd length by the alternating sequence

(-1' is the perfect sequence with the same length
[40], [41]. The generator of PTSs of length 4N (Fig. 4)
consists of 1 — the alternating sequence generator of;
2, 3 — the generators of PTSs with odd length N and

clock frequency f.; 4 — the multiplier; 5 — the mul-
tiplexer which joins together two input sequences in-
to one output sequence. As a result, the PTS of length
4N and double frequency 2f, is produced on the

output of the multiplexer.

Radio electronic facilities for signal transmission, reception and processing

1 —» ——p» 5 |—>
2 3

Fig. 4. Block-diagram of PTS with the length 4N :
1 — meander generator; 2, 3 — generators of the PTPs
with odd length N and clock frequency f.; 4 —multiplier;

5 — multiplexer

Conclusion. The study presents a brief retrospec-
tive review of 60 years of history of PTSs and consid-
ers the generators of some PTS families. Over the past
two decades various new PTS families have been con-
structed and investigated, but the last review of PTSs
was published in 1996, leading to the need for this
study. The interest in PTSs is generated by the fact that
they demonstrate perfect auto-correlation properties
and their energy efficiency converges to one with an
increase of length. This allows them to be used in
modern radio communications and radar systems and
in CW and LPI radars in particular.

In addition to informational and bibliographical
objectives, this review shows the interconnection be-
tween PTSs obtained at different time and their
equivalence to the circular weighing matrices.

This review could be useful for developers of
various systems where perfect ternary sequences are
used.
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