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Abstract.

Introduction. Monitoring of the depth of anesthesia (DA) during surgery is a complex task. Since electroencephalogram
(EEG) signals contain valuable information about processes in the brain, EEG analysis is considered to be one of the most
useful methods for the study and assessment of anesthetic depth in clinical applications. While the EEG of conscious sub-
jects, as a rule, contains mixed alpha and beta rhythms, the frequency composition of the EEG is affected by anesthesia.
Changes in EEG signals caused by the transition from a conscious state to that of deep anesthesia manifest as a shift of
the spectral components of the signal to the lower part of the frequency range. However, anesthesia causes a whole
range of neurophysiological changes, which cannot be correctly assessed using a single indicator.

Objective. In order to adequately describe complex processes during the transition from a conscious state to that of
deep anesthesia, a method for assessing DA is proposed that uses a comprehensive set of parameters reflecting
changes in the EEG signal. The article presents the results of the study into the possibility of building a regression
model based on artificial neural networks (ANN) to determine depth of anesthesia using a set of parameters calculat-
ed by EEG.

Materials and methods. The authors of the article propose a method for assessing DA based on the use of neural
networks, whose input parameters are time and frequency, as well as EEG parameters comprising spectral entropy
(SE), burst-suppression ratio (BSR), spectral edge frequency (SEF95) and relative beta ratio (RBR) for three pairs of fre-
quency ranges.

Results. The optimal ANN parameters were determined, at which the highest level of regression is achieved between
the calculated and the verified DA index values.

Conclusion. In order to create a more practically applicable version of the algorithm, it is necessary to further investi-
gate the noise stability of the proposed method and develop a set of algorithmic solutions that ensure the reliable
operation of the algorithm in the presence of noise.

Key words: EEG, Depth of anesthesia estimation, Artificial neural networks, Spectral entropy, BIS-index
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OLLEHKA rNYBWHbI AHECTE3WW MO 3MEKTPO3HLEDPANOrPAMME
C ICNOJIbSOBAHVNEM HEMPOHHbIX CETE

AHHOTauuA

BeedeHue. MoHumMopuHz 2ay6uHbl aHecmesuu hpu npogedeHUU Xupypauyeckux onepayull aensemcs caoxHol 3a-
dayedl. MockoAbLKY CU2HOALI 31eKmpo3Hyepanozpammel (331) codepicam yeHHyr UHPOpMAyuU O npoyeccax 8 2o-
/7108HOM Mo32e, aHaU3 33 paccMampueaemca Kak 00UH U3 Haubos1iee nose3HbiX Memodos 8 UCcAed08aHUU U OYeH-
Ke 2/1y6uHbl gHecmesuu 8 KAUHUYeCKUX npuMeHeHUsX. AHecmesupyrowue cpedcmea eAusom Ha 4aCmMomHsIl Co-
cmae 33I. 33 6odpcmeyowux Cybbekmos, Kak npasuso, cooepxcum cMeuwaHHble anepa- u bema-pummsl. ViameHe-
Hus & I3[, 8bi38aHHbIE nepexodoM om COCMOAHUA 600pCMBOBAHUA K COCMOAHUI 2/1y60K0U aHecme3suu, Nposens-
romcs 8 sude CMewjeHUs CnekmpasIbHbIX COCMABASIOUWUX CU2HAAA K HUXHel Yacmu duana3oHa yacmom. OdHaKo
aHecmesupyroujue cpedcmea 8bi3bi8aom yenbili KOMNAekc HelipoPu3uonozuyeckux umeHeHUl, Komopelli He8o3-
MOX}CHO NPasuU/IbHO OYeHUMb MO/bKO 00HUM NoKazamesem.

Lens pa6omel. /113 a0ekeamHO020 ONUCAHUA C/0XCHbIX NPoYeccos 8 nepuod nepexoda om 600pCMB80BAHUSA K 2/1y-
6okoli aHecme3uu Heobxo0uM Memod OUeHKU 2/1y6UHbI aHecmesuu, Ucnoab3yrowuli KoMnaekcHoll Habop napa-
Mempos, OMpaXxcarowjux usmeHeHus 8 cueHasne 33I. B Hacmosujeli cmamee npedcmaesieHsl pesy6mamel UCC/e00-
8QHUSA 803MOXHOCMU NOCMPOEHUS pPezpeccUOHHOU MOOenuU HO OCHOBE UCKYCCMBeHHbIX HelipoHHsix cemeli (MHC)
015 onpedesieHUA yposHel aHecme3uu ¢ Ucnoas308aHUEM HAboPa paccyumelgaemsix no 33 napamempos.
Mamepuansl u Memodsl. [pedsnoxeH Memod OUeHKU ypOBHS GHeCmesuu, OCHOBAHHbIU Ha npumeHeHuu WVHC,
8X00HBIMU NAPAMemMpaMu KOmMopbiX ABAAMCA 8peMeHHble U 4acmomHsle nokazamenu 33, a UMeHHO: cnek-
MmpaaeHAs 3HMPONUS; OMHOWeHUE “8CNbIWKU/N00asAeHUE”; CneKmpaseHAs Kpaesas yacmoma u 102apudm om-
HoweHUs MoujHocmeli cnekmpa 014 mpex Nap 4acmomHelx OUANA30HOS.

Pe3ynemamel. boiau onpedesneHsl onmumansHeie napamempesl MHC, npu komopsix docmuzaemcsa Haussicwull ypo-
8EHb pezpeccuu Mexcdy paccHumaHHsIMU U 8epUGUUUPOBAHHbIMU 3HOYEHUAMU NOKa3ames 2y6uHel aHecme3uu.
3aknroveHue. /19 C030aHUA NPAKMUYECKO20 8GPUAHMA A120pUMMA HE0b6X00UMO 00NOAHUMENbHO UCC1e0080Mb
nomexoycmou4ugocmes paccMampueaemMozo mMemoda U pa3pabomame KOMNAeKC an20pUmmu4eckux peweHud,
obecneyusaroUUx HadexHyro pabomy an20puMMa NPU HAAUYUU WyMOo8.

KnroueBble cnoBa: 33I, oueHKa rybuHbl aHecTe3nmn, NCKYCCTBEHHbIe HEeMPOHHbIe CeTy, CNeKkTpaabHas 3HTPO-
nus, BIS-nHaekc

Ana untuposBaHusa: Anb-fannm M. A., KannHunueHko A. H. OueHka rybuHbl aHecTesmm no 3nekTpoaHuedano-
rpamMme C MCMONb30BaHWEM HeMpOHHbIX ceTeln // N3B. By3oB Poccun. PagmoanektpoHuka. 2019. T. 22, Ne 3.
C. 106-112. doi: 10.32603/1993-8985-2019-22-3-106-112

NcToUYHUK PpnHaHCMpoBaHMA. PaboTa BbiNoHeHa Npu noaaepxke rpaHTa PO®U 19-07-00963 A.
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Introduction. During general anesthesia, a pa-
tient experiences a complete loss of consciousness
achieved through a combination of injectable and
inhaled drugs. This type of anesthesia is often used
for highly invasive surgical interventions or when a
complete relaxation of the patient is needed. The
most important task of the anesthesiologist is to en-
sure optimal dosages that prevent episodes of in-
traoperative consciousness, which can cause danger-
ous psychological effects in patients [1]. Therefore,

an anesthesiologist should be able to accurately con-
trol the depth of anesthesia (DA) and ensure its ade-
quacy. Thus, the development of methods and algo-
rithms for the accurate assessment of the depth of
anesthesia during surgical operations is particularly
important.

Over the past two decades, new DA assessment
approaches based on electroencephalogram (EEG)
signal processing have been adopted, replacing tradi-
tional haemodynamic monitoring methods. Since
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anesthesia has a direct effect on the synaptic activity
of brain neurons [2], it is possible to use EEG analy-
sis to permit a quantitative DA assessment [3], [4].

Due to the complexity of an EEG visual interpre-
tation, it is necessary to use automatic computer-
aided signal processing techniques to assess anesthet-
ic depth. A number of studies report on the use of
non-linear analysis to assess DA using EEG. In par-
ticular, in [5], the use of spectral entropy and approx-
imate entropy to quantify the regularity of an EEG
signal was investigated. The results demonstrate the
high sensitivity of these parameters to signal fre-
guency content and dose of anesthetic drug. The DA
parameter, namely a spectral edge frequency (SEF),
is studied in [6]. The sensitivity and specificity for
predicting a movements occurrence during anesthe-
sia are 72 and 82%, respectively, when a frequency
threshold value is SEF=14 Hz.

The bispectral index (BIS) is a widely used algo-
rithm for DA assessment [3], [7]. The BIS algorithm
comprises a complex time-frequency parameter hav-
ing several sub-parameters whose values change ac-
cording to a patient’s DA. BIS indices near zero val-
ues correspond to a very low brain activity state, and
values in the interval from 20 to 80 denote different
levels of surgical anesthesia, while their values close
to 100 mean a patient wakefulness. Two BIS-index
sub-parameters are burst-suppression ratio (BSR)
and relative beta ratio (RBR) [7].

Anesthesia causes a complex of neurophysiolog-
ical changes, which determines the EEG complexity
[3]. An entire set of EEG parameters describing all
factors of transition from wakefulness to deep anes-
thesia is required in order to be able to quantify these
changes. After the required set of EEG parameters
has been formed, it can be used to calculate numeri-
cal indicators that characterise various stages of an-
esthesia.

The rapid technology evolution contributes to the
emergence of new recognition and classification
methods, among which those based on neural net-
works are among the most promising. Artificial neu-
ral networks (ANN) are computational algorithms
consisting of a series of interconnected elementary
processors (cells or neurons). Since the most im-
portant feature of ANNs is the ability to learn, they
are suitable for tasks related to pattern recognition,
prediction, optimisation and classification. Technical-
ly, learning implies the ability to find coefficients of
connections between neurons. In the process of
learning, a neural network is able to detect complex
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dependencies between input and output data, as well
as perform a generalisation. Each cell is character-
ised by a transfer function that processes its input
information, while its weighted output is sent to oth-
er cells that are associated with it [8], [9].

In the present study, which aims to investigate
the possibility of building an ANN-based regression
model to determine levels of anesthesia using a set of
parameters calculated by EEG, the following parame-
ters are used as inputs:

— spectral entropy (SE);

— burst-suppression ratio (BSR);

— spectral edge frequency (SEF95);

— logarithm of the relative beta ratio (RBR) for
three pairs of frequency bands.

Materials and methods. The data consist of
EEG records obtained during surgery via electrodes
located on a patient’s forehead. The anesthetic used
is Propofol. In parallel with the signal recording,
control device (anesthesia monitor) readings are rec-
orded once every 30 seconds, which allow a quanti-
tative estimation of anesthesia via BIS-index. The
study uses a set of 319 EEG fragments of 30 seconds
each; these are selected to allow presentation of the
entire range of BIS-index values as evenly as possi-
ble. The algorithm and experiments implementations
are performed by using the MATLAB software.

Calculation of parameters. The BSR sub-
parameter is used to evaluate the burst-suppression
ratio during deep anesthesia. In this case, signal seg-
ments having very low amplitude alternate with high
amplitude segments. To calculate this parameter,
“suppression” segments are identified as periods hav-
ing a duration of at least 0.5 s when the EEG voltage
does not exceed 5.0 puV [7]. Following a calculation
of the total time in a “suppression™ state, the BSR
parameter is determined as a fraction of the seg-
ment’s total length where EEG meets the “suppres-
sion” criteria.

In order to determine the spectral entropy value,
a calculation of power spectral density (PSD) is per-
formed using the fast Fourier transform method.
Then the obtained PSD is normalised so that the re-
sult of multiplying the total signal power in a certain
frequency band f; < f < f, by normalisation con-

stant is equal to one:
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where R, (fj) is the normalised PSD value;

Cy, is the normalisation constant; Ry(fj) is a PSD

value of EEG signal at the i-th frequency value in a
studied range.
Next, spectral entropy values are calculated [10]:

To calculate the normalised SE,, value, the ob-

tained result is divided by the IgN value, where N is a
number of frequency components:

SE,, = SE/IgN.

The spectral edge frequency (SEF95) is a fre-
quency within which 95% of spectrum power is con-
centrated. SEF95 usually decreases during anesthesia
[7]. The RBR parameter is a logarithm of the total

power ratio R, in an empirically-defined, low-
frequency band (from 0 to 1.5 Hz) to the sum of this
quantity and a total power B in the i-th frequency
range:

P
RBRi=IngP,
0 1

where i=1, 2, 3, and B, P,, P; are calculated for

frequency ranges of 7-16, 4-6 and 16-30 Hz, respec-
tively. These ranges are chosen empirically according to
the best separation between different anesthetic state
criteria [11], [12].

Thus, a set of six EEG indicators is formed,
namely SE, BSR, SEF95, RBR;, RBR, and RBR3

for all verified levels of anesthesia.

Selection of ANN structure. These parameters
are used as ANN input variables for all levels of an-
aesthesia. For the ANN training and testing, samples
are first randomly mixed and then divided into the
following databases: a training database made up of
60% of the total sample size, a validation database
composed of 20% of the total sample size and a test
database comprising 20% of the total sample size.

In order to assess anesthesia levels, the most ap-
propriate approach for modelling the ANN structure is
the multilayer perceptron (MLP) model [13], since it
can be used to solve the regression problem for one
output parameter. The ANN effectiveness is estimated
by using the regression coefficient R. Structures with
one, two, three and four hidden layers are investigated.
The number of neurons in each hidden layer varies

from 10 to 100 with a step of 5 neurons. Hyperbolic
tangent and linear functions are selected as activation
functions of the hidden and output layers, respectively
[14], [15].

Results analysis. The table shows regression co-
efficients Ray for ANN different structures that are
averaged over test sample values. The highest value
of the coefficient Ray = 0.94 is achieved for an ANN
structure having hidden layers containing 60, 35, 35
and 60 neurons in the first, second, third and fourth
layers, respectively. Studies have shown that a fur-
ther increase in the number of layers does not lead to
an increase in the average coefficient value.

Regression coefficient values averaged
over the test sample

Number of ANN hidden layers Ry
1 0.87
2 0.88
3 0.89
4 0.94

The testing results of the developed ANN are pre-
sented in the figure, which compares the ANN predicted
values of anesthesia depth D with the BIS-index values
obtained on the test sample. The circles denote results
obtained from the sample elements, the solid line shows
a comparison of the BIS-index and ANN results, while
the dashed line reflects the indices complete matching.

The figure shows that the depth of anesthesia es-
timates formed by ANN are in a good agreement with
the results obtained by the traditional methodology of
the anesthesia depth estimation.

80—

40—

20—

| | I I
0 20 40 60 80 BIS
Results comparison of anesthesia depth predictions given by

the artificial neural network and BIS-index values
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Conclusion. In the presented study, an ANN-
based method for assessing the level of anesthesia,
whose input parameters are EEG parameters of time
and frequency, namely: spectral entropy (SE); burst-
suppression ratio (BSR); spectral edge frequency
(SEF95) and logarithm of the relative band ratio
(RBR) for three pairs of frequency bands is pro-
posed. The optimal ANN parameters take the form of
a multilayer perceptron, in which the highest level of
regression is achieved between the calculated and the
verified values of the anaesthesia depth indices, are

determined. The proposed method can be used in
anesthesia monitors used to control the depth of an-
aesthesia in order to select an adequate dose of anes-
thesia during surgical procedures, allowing both in-
traoperative consciousness episodes and excessively
deep anesthesia to be avoided. In order to create a
practical version of the algorithm, it will be neces-
sary to further investigate the noise immunity of the
proposed method and develop a set of algorithmic
solutions that ensure a reliable execution of the algo-
rithm in the presence of sources of noise.
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