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Abstract. A method for analysis of dispersion characteristics of guided optical modes propagating in the opti-
cal waveguides with small cross-sections is proposed. The method is based on introduction of a correction factor for
a longitudinal wavenumber of propagating modes. The correction factor arises when a cross-section of the basic
rectangular waveguide is subjected to perturbation. The electromagnetic field distributions along with the mode
longitudinal wavenumber are found by means of variable separation method. The longitudinal wavenumber correc-
tion factor is analytically calculated in terms of coupled mode theory. The combined use of the complete set of
equations of electrodynamics together with the concept of effective sources gives rise to the correction factor in the
form of an intermodal coupling coefficient. It is pointed out that the coupling coefficient consists of two compo-
nents, namely bulk and surface, owing to accurate account of the electrodynamics boundary conditions. Using the
method proposed, the dispersion characteristics of the fundamental modes propagating in the practically employed
optical waveguides having a trapezoidal cross-section are calculated. An impact of the waveguide cross-section
shape to cladding dielectric constant ratio on the mode dispersion characteristics is analyzed. The necessity to take into
consideration an imperfection of the waveguide cross-section in a wide range of operating wavelengths is demonstrated.
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AHanuTnyeckas Teopus AUCNepcmMmn oNTUYECKNX BOJTH PErynsipHbIX MUKPOBOJIHOBO/,0B

AHHOmayus. Pa3pabomaH Memood aHAU3G OUCNEPCUOHHbIX XAPOKMEPUCMUK HANPABASEeMbIX MOO 8 pe2ysspHbIX onmuye-
CKUX MUKPOBO/IHOBOOOX MO/I020 NONEPEYHO20 ceveHus. Memood 0CHOBAH HA 88e0eHUU NONPABOK K NPOO0/IbHOMY 80/IHOBOMY YUIC-
/Iy MOO NpsAMOY20/1bHO20 80/IH0B00Q, BbIGPAHHO20 8 Kadecmee 6a308020, NPU UCKAOXEHUU POPMbI €20 NoNepeyHo20 CeveHUs.
PacnpedesieHusi 31eKmpoMazHUMHO20 NS U NPo00/IbHO20 B0HOB020 YUCIA 60308020 80/HOBOAA PACCYUMBIBAOMCA MEMOOOM
pazdeneHus nepemeHHsiX. [lonpagka K NPod0LHOMY 80HOBOMY YUY PACCHUMbIBAEMCA AHOUMUYECKU 8 MepMUHAX Meopuu
CBA30HHbIX MOO. YKO30HHOA nonpaska & eude KoagguyueHma Mexmooosoli 8A3U 803HUKAEM HO OCHOBAHUU COBMECMHO20
UCnoNL308aHUS NOMHOL cucmemsl ypasHeHul Makceenna npu esedeHuu NOHAMUS 06 3PekmusHbIX UCMOYHUKAX. [ToKa3aHO,
4mo noC1ed08aMeNbHLIU y4em 2paHUYHBIX YC108UL 31eKMPOOUHAMUKU NpUsodum K popme Ko3pduyueHma cesasu, skmoyaroujeli
06BeMHYI0 U NOBEPXHOCMHYHO cocmasssrowue. PaspabomaHHeili Memod npumeHeH 0/151 pacyema OUCNePCUOHHBIX Xapakmepu-
CMUK HU3WUX 80/IHOBOOHbIX MOO, PACNpOCMPAHAIUUXCA 8 MUKPOBOHOBOOOX MpPaneyuesuoHo20 ce4YeHUs, NPUMEHAEMbIX Ha
npakmuke. [1P00eMOHCMPUPOBAHO 8/USHUE NONePeYHO20 CeYeHUs MUKDOBOHOB0OA HO OUCNEPCUOHHbIE XAPAKMepUCMUKU MO0
8 308UCUMOCMIU OM COOMHOWEHUS CMOPOH, G MaKHE OmM OMHOWeEHUS 3HaYeHUl Ou3/eKmpUYecKux npoHuyaemocmedi
cepoyesuUHs! MUKPOBO/IHOB0OA U €20 060/104KU. [TOKO3aHA HE06X0OUMOCMb y4ema 8AUSHUSA POPMbI MUKPOBO/IHOB00A HA ducnep-
CUOHHbIEe XapaKmepucmuku Mod 8 WUPOKOM QUaNa3oHe 3HaYeHUl pa6oyux 0AUH 80/H U NPU PA3UYHbLIX pacnpedeneHusix ou-
3/1ekmpuyeckoli NPoHUYaeMocmu 80/1Ho8edyueli CmpyKmypel.
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Introduction. Within the last two decades, the
field of microwave photonics (MWP) has been rapid-
ly developing [1]-[3]. At the same time, a compara-
tively independent research area has developed as a
part of the field. It was named as integrated micro-
wave photonics (IMWP) [4], [5]. One of the IMWP
key elements is a thin-film dielectric optical wave-
guide as well as components built from such wave-
guides [6], [7]. It should be noted that specific nature
of the planar technology used to produce optical
waveguides results in deviation of their cross-section
from a rectangular shape [7], [8]. The non-
rectangular shape of the waveguide cross-section
affects dispersion characteristics of propagating
modes and demands extending already existing theo-
ries for wave properties of optical waveguides.

According to literature, there are several tech-
niques to be used for calculation of dispersion char-
acteristics of modes in optical waveguides with an
arbitrary cross-section. They include a circular har-
monics method based on a waveguide field expan-
sion into an infinite series of Bessel and Hankel
functions [8], [9], a method combining a series ex-
pansion and a contour integration [10], a perturbation
theory method [11] as well as the coupled-mode the-
ory method [12]. Note that methods [8]-[10] are ra-
ther cumbersome and compute-intensive. Therefore
their practical application imposes the use of certain
assumptions [13]. Such assumptions due to commen-
surability of a waveguide cross-section with operat-
ing wavelengths may have an uncontrollable impact
on dispersion characteristics of propagating waves.

In addition to analytical ones, other methods of
simulation of trapezoidal cross-section optical wave-
guides are developed. They include e.g. a finite differ-
ence method [14], an equivalent circuit method [15], etc.

Among the forenamed calculation methods for
mode dispersion the special mention should go to the
method based on the use of the complete system of
equations of electrodynamics and the coupled-modes
theory in combination with the concept of "effective
sources" [12]. This method allows for analytical de-
scription of the waveguide dispersion properties with
arbitrary behavior ("modulation") of their cross-section.

The goal of this article is to develop an analytical
theory enabling to precisely describe dispersion
characteristics of guided optical waves propagating
in regular dielectric microwaveguides of non-
rectangular cross-section.

Dispersion characteristics of modes of a rec-
tangular dielectric waveguide. First, we turn our
attention to analysis of the dispersion characteristics
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of guided modes in the lossless dielectric waveguide
with a rectangular cross-section because such wave-
guide is chosen as a reference one in handling our
problem. Such a dielectric structure containing a rec-
tangular waveguide is shown in fig. 1. The wave-
guide core has width 2a and height 2b, a dielectric

permittivity of €1, and it is surrounded by dielectrics
with the permittivities €y, €, €3 u &4. To calcu-
late mode dispersion characteristics, we use the
method of approximate analysis which basically is a
method of separation of variables [13].

Note that in solving of the boundary value prob-
lem four cases can be distinguished [16], [17] that
correspond to different combinations of trigonomet-
ric functions. Each combination describes a set of
propagating Eigen modes which together form the
infinite set of modes. The following derivation con-
cerns the lowest-type guided modes of two polariza-

tions, namely E)l(l and Ei,l . The expressions for the

other modes are not given due to their analogy.
For the chosen modes the fields at frequency
o within the waveguide core (region 1, —a<x<a
and —b < y < b) have the following form:
cos

sin
m
ElZ:El (Xklx) .
COS sSin

(ykly ) e—i(BZ—wt);
(D

s (ykly)e—i(ﬁz—wt),

cos in
m
Hiz=H{" _ (%kix)
sin cos
where E{™ and H{™ are constants meaning ampli-
tude; Ky and kjy are transverse wave numbers
within the waveguide; B is an unknown longitudinal

wave number. In the expression (1) the upper trigo-
nometric functions describe the waveguide mode

E)l(l, and the lower ones describe Ei,l mode. Here-

inafter for the sake of simplicity the time factor
exp(—iot) is omitted and the cross-sectional field

distributions are marked with circumflex.



Outside the waveguide in the regions 3 (where X> a
and 0<y<b)and 0 (wherey>b and 0 < x<a) the

expressions for electric field take the form of
Es; =Epz(a, y)exp[—(x—a)ksy ;
Eoz = Biz (x.b)exp[—(y—b)kgy |,
where K3y and ko are the components of the out-

side transverse wavenumber. Their corresponding
expressions read:

Koy =\/®2 (e1—20)Ko _k12y3

K3x =\/®2(81 —&3) Mo — ki

where L stands for the vacuum permeability. In the

corner regions of x>a and y>b, the fields sym-
metrical against the Ox and Oy axes are considered
equal to zero.

Consider next the case of gy=¢y=¢€3=¢4=
=¢g,, that will make possible to derive a dispersion

equation by imposing the electrodynamics boundary
conditions only along X=a and y =b waveguide walls.

The transverse field components in its turn are
expressed by means of the longitudinal ones derived
from Maxwell’s equations. Imposition of the conti-
nuity boundary conditions of electrodynamics on the
transverse field components produces a set of equa-
tions for the components of the transverse wave-
number of the modes:

¢ ¢
kixK3x Ctgg(aklx) —kiykoy cti(bkly) tki =0;

(2)
t t 2
kixKsx Ctgg("ﬂklx) —kiykoy Ctgg(bkw) Ferkiz =0,

where &, =g /¢y, and the outside transverse wave-
number K¢,, as indicated by the "t" subscript. It can
be expressed as follows:

2 2 2 2
kiz = kg (&1 —&2) = kix —kiy.
In the set of equations (2) the upper line corresponds
to the mode Eil , and the lower one to the mode Ei,l.

From the set of equations (2) we find the components of
the transverse wavenumber Ky and Ky, which occur

in the expression for the propagation constant

B =k —kix — iy, (3)

where k12 is the square absolute value of the inside

wave vector, that is equal to klz = kgal = 0)281 Lo-
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Introduction of effective sources. Now we turn
to finding dispersion characteristics of the trapezoi-
dal waveguide. To do this we employ coupled-mode
theory [11]. Following the theory let us write electric
and magnetic fields as an expansion in Eigen modes
of the rectangular waveguide:

E= Z Ah]::ne_iBnZQ

" (4)
H=Y AHe P,

n

where A, are the mode excitation amplitudes; Ep,

and ﬁn are the waveguide modes derived from the

solutions of Maxwell’s equations in the section
above; B, is a mode propagation constant.

In the expansion (4) the radiative modes are not ex-
plicitly emphasized. However, they can be taken into
account if we consider summation signs in generalized
sense, including integrating on continuous argument.

Auvailability of the excitation regions in the wave-
guiding structure changes dispersion characteristics of
an ideal waveguide. Note that excitation can result from
both availability of the real electromagnetic field source
and changes in the environment parameters. Mathemat-
ically both excitation types are described by means of
the excitation currents which are a part of Maxwell’s
equations. Everywhere outside excitation areas the field
is described as a sum of Eigen functions (4).

Let us write the expressions for the fields inside
the excitation areas. To do this, let us make use of the
coupled-mode theory inherent assumption of that the
expansion amplitudes A, acquire longitudinal de-

pendence in the excitation area. Moreover, as you
can see in the monographs [18], [19], in excitation
area the expansions (4) lose their force. Thus, they
need to include longitudinal fields:

E=Y A (DEePn? 4+ Ey;
n

- ip 7 &)
H:ZAh(z)Hne n? 1 Hy,
n

where E, and Hj, are called orthogonal comple-

mentary fields. They represent orthogonal comple-
ment to Hilbert space spanned on the waveguide ba-
sis functions. In (5) the "b" subscript indicates the
bulk nature of the fields.

Now following the coupled-mode theory, we in-
troduce the effective sources of excitation. In isotropic
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medium, scalar dielectric and magnetic permeability
occur in the cons constitutive equations as follows:

D=¢E; B=pH.

Excitation of the medium changes field distribu-
tions introducing the excessive inductions

AD = A¢E; AB = AuH,
where Ag = gper (11, 2) —£(1¢); Al = pper (1,2) —
—p(r); ry is a coordinate in the transverse plane;

Epert (r;.z) and Hpert (r;,z) are the complete per-

mittivity and permeability of perturbed medium;
while g(r;) and p(r;) are the permittivity and per-
meability of nonperturbed medium. They are inde-
pendent of time because they are purely geometrical
in nature. At optical frequencies e (rt,z) =

=p(r;)=1, which gives Au=0. Hence, in the con-

sidered particular case the excessive induction
AB =0. We mention in passing that introduction of
excessive inductions is similar to "polarization per-
turbation" described in [20]. The excessive induc-
tions produce the excessive bias currents

Jp =ioAD; Jp =i0AB =0, (6)

nn

where the "e" and "m" superscripts emphasize either
electric or magnetic nature of the corresponding current.

Now we obtain an expression for effective bulk
electric current. With regard to (6) we now write
down Maxwell’s equation as

VxE=-ioB,

VxH=ioD+J}. @)

Substitution of
Omuodka! UcTouHUK cCcbUIKH He HaiiaeH. in (7)
allows to express the effective bulk electric current in
terms of orthogonal complementary fields:

1
E,=-——-1J°, Hy=0.
b= e b2 b
Next, we show that besides bulk currents, the effec-
tive sources of excitation are to include surface currents
as well. For this purpose, we write down boundary con-
ditions in a common form on a contour L that encloses

cross-section of the excitation area S(fig. 2):
n" xE" +n" xE” =-J;

n"xH" +n”" xH =J¢,

)
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where E™ and E~ designate the electric field inside
and outside of § H* and H™ designate the magnet-
ic field inside and outside of S. The normals n™ and

n are directed inside and outside of S The "s" sub-
script underlines the surface nature of the currents. The
designations introduced in (8) are represented on fig. 2.

The expressions (8) stem from the fact that the
fields inside the region S (5) differ from the fields
outside S (4) by the value of E},. Substitution of de-
compositions (4) and (5) in the conditions (8) makes
it possible to obtain an expression for effective sur-
face currents that are written as:

eZXll

JS=- J{,‘;L; J&=0.

ioe

Here e, is the longitudinal unit vector and n is
the outside-pointing normal to S

Correction for longitudinal wave number. For
the purpose of derivation of the set of coupled mode
equations for the perturbed system it is necessary to
obtain an expansion of the effective sources in terms
of the Eigen modes of the unperturbed system. Next,
the obtained expression should be substituted in Lo-
rentz lemma written in conjugate form. Hence, it is
possible to find an expression describing excitation
of the m-th waveguide mode with the set of all Eigen
modes of the waveguiding structure

day, (2)/dz=-iBmam (2) + > kman (2),  (9)
n

where ay,(2) = A, (2)exp(-ipz). Note that in (9) the

coupling factor is introduced, consisting of two parts. The
first one is produced by the bulk and the second one by
the surface excitation source. It has the following form

Kmn = KPnn + K,
where the corresponding "b" and "s" subscripts carry
the same meaning as in the previous section but were
moved upwards for further notational convenience.
The first one is induced by the bulk sources of exci-
tation and the second one by the surface ones. As



calculations show, the expressions for the bulk and
surface coupling factors look like this:

K]rjnn :_ll\li (AEEn)E?ndS;

ms

) B (10)
Ko = = (ATE,)AdL,

mp

where Ny, is a normalizing factor; Ag and

AE are the tensors of static surface coupling which

describe geometrical perturbation of the waveguide.
Their use makes it possible to considerably simplify
writing the expressions for mode decomposition of
the effective sources. Normalizing factor N, is relat-

ed to the mode power flow density:

Nm :2Re_[[l:3>:nxﬁm}ede,
C

where C is the contour encloses the waveguide and
its surroundings.
Note that the coupling factor obtained here differs

from conventionally used [21] by the element icjyy,. The

element occurrence in the intermode coupling is caused
by introduction of the effective sources and their descrip-
tion in terms of orthogonal complementary fields.

We emphasize that the expression (10) enables
considering waveguides with perturbations of differ-
ent nature. As an example, we mention periodical
modulation of the waveguide cross-section and/or
periodical modulation of the dielectric permittivity of
the waveguide material, the waveguide bends, etc.

Below we consider a particular case of lowest-
type propagating mode in a regular dielectric wave-
guide having nonrectangular cross-section. A distinc-
tive feature of such mode is lack of interaction with
other modes. The propagation constant of a regular
nonrectangular waveguide By, is related to the prop-

agation constant of the reference rectangular wave-
guide B, by means of the coupling factor:

Bm =PBm *+ikmm-
This last expression can be derived from (10) by
taking element kymam (z) out of summation symbol.
The coupling tensors defining «y, in the case of

trapezoidal cross-section waveguide take the form of

81(.\/)}

Az(y>=As<y){i—ezezgz(y)

e [2-a] Y
AE(y)=ee, e (V) ||_’
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where 1 is a unity matrix; e; is a unit vector tangent
to contour L, e,e, is a dyad.

To define the integration limits in (10) we de-
scribe the lateral side of trapezoidal cross-section by
means of function sp (y) or sg () (see fig. 2). In
this case, with regard to the expressions (11), the
integrals (10) assume the following form:

o b -a+s(y)
Klr)nn=—N— Wdxdy +
m_p _a
o ba-s(y)
+—I f Ydxdy;
Nrn—b a
1 b_a+sL(y)
Koy = ——— =dxdy —
m Nm_jb Ja y
1 ba_sR(y)A
-— [ [ Zdxdy,
Nm—b a
where
N A% A &1 ox
k3 =(82 _SI)KEmtEnt +$Esznzja
s €y —€1| O (4% 2 O (. ~% =~
== —|\HwEny |——\H
& {8X( my nz) 8y( mx nz)}

In the last expression the notation l:lm is intro-

duced based on En = Em + ezlénz.

Simulation results. Following the above de-
scribed analytical theory we perform analysis of the
influence of width ratio a'/a to the dispersion charac-
teristics of microwaveguides. In doing so, we specify
that & = a’ (see fig. 2). The introduced a'/a factor can
vary between 0 and 1, which corresponds to changing
of the cross-section shape from triangle to rectangular.
It is also convenient to introduce deviation angle 1 of
trapezoidal waveguide lateral wall from the reference
rectangular one. To demonstrate the simulation results
we employ the normalized coordinates:

2 /1,2

2 B —-& 2b

B :L’V = kO_ [e1 —¢€5.
€1 & T

Fig. 3 presents the results of theoretical modeling of

E)l(l -mode dispersion characteristic of optical micro-

waveguide obtained for different values of a'/a factor
and n angle. The microwaveguide under consideration
has the cross-section dimensions a=1.4 um and
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b=0.7 um and permittivity &; =1.98 and &, =1.44.
The digits on curves designate the following:
1 - a/a=10; 2 - a/a=0.58;, 3 - a/a=0.4;
4 —a'/a=0.1. From fig. 3 it follows that for the same
wavelength the propagation factor decreases with in-
creasing the sidewall angle. From the physical point of
view, this is caused by increase of the transverse wave
number and is in agreement with the general formula (3).

Fig. 4 shows simulated dependencies of the
propagation factor deviation on a'/a ratio for the

waveguides with different aspect ratios. The value
plotted on the Ox-axis is [%]

ap =Pm=Pm ;g0
m

with B, values taken at the wavelength of 1.55 um,
which is typical for optical C-band. The digits on
curves designate the following: 1 — a/b=4; 2 -
a/b=3; 3 - a/b=2; 4 — a/b=1. The dielectric
permittivities employed in the simulation correspond
to the previous case. The behavior of the curves in
fig. 4 are nearly identical. This points to the fact that
there is no "preferable" cross-section aspect ratio for
minimization of trapezoidal shape impact on the
waveguide dispersion characteristics.
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Fig. 5 shows a set of the curves that represent the
propagation factor dependency on the core-to-
surroundings relative permittivity ¢, for different values

of the n angle. The microwaveguide under consideration

has the cross-section dimensions a=1.4 ym and

b=0.7 um. The digits on curves designate the follow-
ing:1-a'/a=0.9; 2— a'/a=0.7, 3— a'/a=04; 4-
a'/a=0.1. The parameter €., which expresses the ratio

of the dielectric constant of the core of the microwave-
guide and the surrounding space, determines the degree
of concentration of the mode field in the core of the
waveguide. For a small value of ¢, the perturbation of

the cross-section of the waveguide has a weak effect on
the dispersion characteristics of the modes, since the field
of the main mode is concentrated in the surrounding
space. Thus, based on the data presented, it should be
concluded that for the waveguides with a high &, value,

it is especially important to take into account the effect of
the non-rectangular shape of the cross section on the dis-
persion characteristics of the modes.

In conclusion, this paper offers an analytical the-
ory for the dispersion characteristics of the guided
modes propagating in the regular optical microwave-
guides with small cross-sections. The theory relies on
the calculation of the corrections to the propagation
factor by means of the coupled mode theory with
introduction of the effective excitation sources.
Based on the developed theory, the dispersion char-
acteristics of the guided modes in the optical dielec-
tric waveguides with the trapezoidal cross-section are
calculated. The microwaveguide cross-section shape
impact on the dispersion characteristics as a function
of the waveguide aspect ratio, as well as the ratio of
the dielectric permittivities of the microwaveguide
and the surrounding space are revealed.
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