УДК 621.372.54

## Е. Н. Червинский ЗАО "СИМЕТА" (Санкт-Петербург)

# Устойчивость частотных характеристик к изменениям параметров электрического фильтра

Предложена методика оценки устойчивости амплитудно- и фазочастотных характеристик к изменению параметров фильтров. В качестве меры отклонения реальной частотной характеристики от расчетной принята интегральная квадратичная функция переменной величины. Даны определения устойчивости по отдельному параметру и комплексной оценки устойчивости к изменению набора параметров. Определен критерий принятия к реализации одного из возможных решений системы нелинейных уравнений при синтезе фильтров. Приведены передаточные функции инверсных и квазиэллиптических фильтров нижних и верхних частот до девятого порядка и примеры расчета параметров фильтров.

### Передаточная функция, синтез фильтра "в целом", инверсный фильтр нижних частот, квазиэллиптический фильтр нижних частот, фильтр верхних частот, устойчивость характеристики по параметру, комплексная оценка устойчивости

При реализации электрического фильтра "в целом" параметры цепи определяются в результате решения системы уравнений, образованных приравниванием коэффициентов при одинаковых степенях переменной в выражениях реализуемой передаточной функции (ПФ) и ПФ фильтра [1], [2]. Примеры синтеза фильтров по ПФ цепи приведены в [3]. Решением системы нелинейных уравнений является искомый набор (или наборы) параметров фильтра, который должен быть приведен к стандартному ряду номинальных значений. Очевидно, что при замене расчетных значений номинальными частотные характеристики фильтра искажаются. Кроме того, сами шкалы номинальных значений в зависимости от выбранного ряда [4] имеют различный разброс значений. Для снижения стоимости изделия предпочтительнее выбирать к реализации массовые типы элементов.

Цель настоящей статьи – разработка методики оценки устойчивости характеристик фильтров к изменению параметров при реализации фильтра "в целом".

Рассмотрим цепь, электрическая схема которой приведена на рис. 1. Цифрами обозначены узлы схемы. На схеме  $\dot{U}_{\rm BX}$  и  $\dot{U}_{\rm BbIX}$  – комплексные амплитуды входного и выходного напряжений; r – ак-

тивное сопротивление, включающее сопротивление источника сигнала;  $Z_k$ , k = 1, 3, ..., n (n – нечетное) и  $Z_m$ , m = 2, 4, ..., n - 1 – сопротивления поперечных и продольных ветвей соответственно; R – сопротивление нагрузки;  $K_y$  – коэффициент усиления усилителя. Запишем соотношения для расчета входного сопротивления Z цепи через сопротивления различных сечений схемы  $Z_k|_{(k+1)}$ :

$$\begin{cases} Z_{n|(n+1)} = Z_{n}R(Z_{n} + R)^{-1}; \\ Z_{(n-2)|(n-1)} = \\ = \left\{ Z_{n-2}^{-1} + [Z_{n-1} + Z_{n|(n+1)}]^{-1} \right\}^{-1}; \\ Z_{(n-4)|(n-3)} = \\ = \left\{ Z_{n-4}^{-1} + [Z_{n-3} + Z_{(n-2)|(n-1)}]^{-1} \right\}^{-1}; (1) \\ \dots; \\ Z_{3|4} = \left[ Z_{3}^{-1} + (Z_{4} + Z_{5|6})^{-1} \right]^{-1}; \\ Z_{1|2} = \left[ Z_{1}^{-1} + (Z_{2} + Z_{3|4})^{-1} \right]^{-1}; \\ Z = r + Z_{1|2}, \end{cases}$$

а также для расчета отношения  $U_{\rm BMX}$  и  $U_{\rm BX}$ :



© Червинский Е. Н., 2017

$$\begin{split} \dot{I}_{BX} &= \dot{U}_{BX} Z^{-1} = \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} ; \\ \dot{U}_{1|2} &= \dot{I}_{BX} Z_{1|2} = \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} Z_{1|2} ; \\ \dot{I}_{1|3} &= \dot{U}_{1|2} \left( Z_{2} + Z_{3|4} \right)^{-1} = \\ &= \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} Z_{1} \left( Z_{1} + Z_{2} + Z_{3|4} \right)^{-1} ; \\ \dot{U}_{3|4} &= \dot{I}_{1|3} Z_{3|4} = \\ &= \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} Z_{1} \left( Z_{1} + Z_{2} + Z_{3|4} \right)^{-1} Z_{3|4} ; \\ \vdots \\ \dot{I}_{(n-4)} (n-2) &= \\ &= \dot{U}_{(n-4)} (n-3) \left[ Z_{n-3} + Z_{(n-2)} (n-1) \right]^{-1} = \\ &= \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} \times \\ \times \prod_{i=1}^{n-4} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{(n-2)} (n-1) &= \dot{I}_{(n-4)} (n-2) Z_{(n-2)} (n-1) = \\ &= \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} Z_{(n-2)} (n-1) \times \\ \times \prod_{i=1}^{n-4} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{I}_{(n-2)|n} &= \dot{U}_{(n-2)|(n-1)} \left[ Z_{n-1} + Z_{n|(n+1)} \right]^{-1} = \\ &= \dot{U}_{BX} \left( r + Z_{1|2} \right)^{-1} \times \\ \times \prod_{i=1}^{n-4} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} \left( r + Z_{1-2} \right)^{-1} Z_{n} R \left( Z_{n} + R \right)^{-1} \times \\ \times \prod_{i=1}^{n-1} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} / \dot{U}_{BX} = K_{Y} \left( r + Z_{1|2} \right)^{-1} Z_{n} R \left( Z_{n} + R \right)^{-1} \times \\ \times \prod_{i=1}^{n-1} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} / \dot{U}_{BX} = K_{Y} \left( r + Z_{1|2} \right)^{-1} Z_{n} R \left( Z_{n} + R \right)^{-1} \times \\ \times \prod_{i=1}^{n-1} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} / \dot{U}_{BX} = K_{Y} \left( r + Z_{1|2} \right)^{-1} Z_{n} R \left( Z_{n} + R \right)^{-1} \times \\ \times \prod_{i=1}^{n-1} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} / \dot{U}_{BX} = K_{Y} \left( r + Z_{1|2} \right)^{-1} Z_{n} R \left( Z_{n} + R \right)^{-1} \times \\ \times \prod_{i=1}^{n-1} \left\{ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} (2i+2) \right]^{-1} \right\} ; \\ \dot{U}_{BBIX} = \left\{ Z_{2i-1} \left[ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} \left] \left[ Z_{i+2} \right] \right\} ; \\ \dot{U}_{BBIX} = \left\{ Z_{2i-1} \left[ Z_{2i-1} \left[ Z_{2i-1} + Z_{2i} + Z_{(2i+1)} \left] \left[ Z_{$$

где  $\dot{I}_{\rm BX}$  – комплексная амплитуда входного тока;  $\dot{U}_{k|(k+1)}$  и  $\dot{I}_{k|(k+2)}$  – комплексные амплитуды напряжений и токов, относящихся к узлам k, (k+1) и (k+2).

Отношение  $\frac{\dot{U}_{\text{вых}}}{\dot{U}_{\text{вх}}}(p)$ , рассматриваемое как функция комплексной переменной  $p = \sigma + j\omega$ , есть ПФ фильтра  $H_n(p)$ . Поскольку нули и полюсы ПФ либо вещественные числа, либо образуют комплексно-сопряженные пары [5], то после перемножения комплексных чисел соответствующее выражение становится функцией мнимой частоты  $s = j\omega$ . Оно записывается в виде отношения полиномов с наибольшей степенью *n*. Разделив числитель и знаменатель дробно-рациональной функции на  $\omega_c^n$  ( $\omega_c$  – угловая частота среза), перейдем к выражению  $H_n(s_H)$  как функции нормированной мнимой частоты  $s_H = j\omega/\omega_c = j\omega_H$ .

Фильтры нижних частот. При использовании в поперечных ветвях емкостей  $C_k$ , k = 1, 3, ..., n, а в продольных ветвях – параллельных колебательных контуров с элементами  $L_m$ ,  $C_m$ , m = 2, 4, ..., n-1, цепь по схеме рис. 1 является фильтром нижних частот (ФНЧ) *n*-го порядка с полюсами затухания в полосе задерживания (ПЗ). Сопротивления поперечных и продольных ветвей ФНЧ определяются как  $Z_k = 1/(sC_k)$  и  $Z_m = sL_m/(s^2L_mC_m + 1)$  соответственно. Подставив  $Z_k$  и  $Z_m$  в (1), (2), определим ПФ  $H_{n\Phi}$ НЧ ( $s_{\rm H}$ ), амплитудно-частотную характеристику (АЧХ)  $H_{n\Phi}$ НЧ ( $\omega$ ) и входное сопротивление  $Z_{n\Phi}$ НЧ (s) цепи по схеме рис. 1:

$$\begin{split} H_{n \oplus H \Psi}(s_{H}) &= \\ &= \frac{K_{n}^{(H)}}{\omega_{c}} \left[ s_{H}^{n-1} + \sum_{i=1}^{(n-1)/2} \omega_{c}^{-2i} \alpha_{n(n-1-2i)} s_{H}^{n-1-2i} \right]; \quad (3) \\ &= \frac{K_{n}^{n} + \sum_{i=1}^{n} \omega_{c}^{-i} \left[ \beta_{n(n-i)}^{(H)} + \gamma_{n(n-i)}^{(H)} \right] s_{H}^{n-i}}{H_{n \oplus H \Psi}(\omega)} = \\ &= \left\{ K_{n}^{(H)} \left| \omega^{n-1} + \sum_{i=1}^{(n-1)/2} \left[ (-1)^{i} \alpha_{n(n-1-2i)} \omega^{n-1-2i} \right] \right] \right\} \times \\ &\times \left\{ \left[ D_{1}^{(H)} \right]^{2} + \left[ D_{2}^{(H)} \right]^{2} \right\}^{-1/2}; \\ X_{n \oplus H \Psi}(s) &= r \frac{s^{n} + \sum_{i=1}^{n} \left[ \beta_{n(n-i)}^{(H)} + \gamma_{n(n-i)}^{(H)} \right] s^{n-i}}{s^{n} + \sum_{i=1}^{n} \beta_{n(n-i)}^{(H)} s^{n-i}}, \end{split}$$

где коэффициенты  $K_n^{(H)}$ ,  $\alpha_{ni}$ ,  $\beta_{ni}^{(H)}$ ,  $\gamma_{ni}^{(H)}$  – функции параметров фильтра;

$$D_{1}^{(H)} = \omega^{n} + \sum_{i=1}^{(n-1)/2} (-1)^{i} \left[ \beta_{n(n-2i)}^{(H)} + \gamma_{n(n-2i)}^{(H)} \right] \omega^{n-2i};$$
  
$$D_{2}^{(H)} = \sum_{i=0}^{(n-1)/2} (-1)^{i} \left[ \beta_{n(n-1-2i)}^{(H)} + \gamma_{n(n-1-2i)}^{(H)} \right] \omega^{n-1-2i}$$

(верхний индекс "н" указывает на принадлежность параметров ФНЧ).

ставлены в табл. 1, где  $\omega_{pm} = 1/\sqrt{L_m C_m}$  – резонансные частоты параллельных контуров.

.....

Входящие в приведенные соотношения коэффициенты для ФНЧ порядков n = 3, 5, 7, 9 пред-

|   | Таблица І                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n | Коэффициенты                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $K_{3}^{(n)} = K_{y}C_{2}/[\mu_{3}^{(n)}r];  \alpha_{30} = \omega_{\pi 2}^{2};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\beta_{32}^{(\mathrm{H})} = (C_1 + C_2) / \lfloor \mu_3^{(\mathrm{H})} R \rfloor;  \gamma_{32}^{(\mathrm{H})} = (C_2 + C_3) / \lfloor \mu_3^{(\mathrm{H})} r \rfloor;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | $\beta_{31}^{(\mathrm{H})} = (C_1 + C_3) / [L_2 \mu_3^{(\mathrm{H})}];  \gamma_{31}^{(\mathrm{H})} = 1 / [\mu_3^{(\mathrm{H})} rR];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | $\beta_{30}^{(\mathrm{H})} = 1 / [L_2 \mu_3^{(\mathrm{H})} R];  \gamma_{30}^{(\mathrm{H})} = 1 / [L_2 \mu_3^{(\mathrm{H})} r],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | где $\mu_3^{(\mathrm{H})} = C_1 C_2 + C_1 C_3 + C_2 C_3.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $K_5^{(\mathrm{H})} = K_y C_2 C_4 / [\mu_5^{(\mathrm{H})} r]; \ \alpha_{52} = \omega_{\mathrm{H}2}^2 + \omega_{\mathrm{H}4}^2; \ \alpha_{50} = \omega_{\mathrm{H}2}^2 \omega_{\mathrm{H}4}^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\beta_{54}^{(\mathrm{H})} = \left[C_1 C_2 + (C_1 + C_2)(C_3 + C_4)\right] / \left[\mu_5^{(\mathrm{H})}R\right];  \gamma_{54}^{(\mathrm{H})} = \left[(C_2 + C_3)(C_4 + C_5) + C_4 C_5\right] / \left[\mu_5^{(\mathrm{H})}r\right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | $\beta_{53}^{(\mathrm{H})} = \left\{ L_2 \Big[ C_1 C_2 + (C_1 + C_2) (C_3 + C_5) \Big] + L_4 \Big[ (C_1 + C_3) (C_4 + C_5) + C_4 C_5 \Big] \right\} / \Big[ L_2 L_4  \mu_5^{(\mathrm{H})} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ~ | $\gamma_{53}^{(\mathrm{H})} = (C_2 + C_3 + C_4) / [\mu_5^{(\mathrm{H})} rR];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5 | $\beta_{52}^{(\mathrm{H})} = \left[L_2(C_1 + C_2) + L_4(C_1 + C_3 + C_4)\right] / \left[L_2L_4\mu_5^{(\mathrm{H})}R\right];  \gamma_{52}^{(\mathrm{H})} = \left[L_2(C_2 + C_3 + C_5) + L_4(C_4 + C_5)\right] / \left[L_2L_4\mu_5^{(\mathrm{H})}r\right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $\beta_{51}^{(\mathrm{H})} = (C_1 + C_3 + C_5) / [L_2 L_4 \mu_5^{(\mathrm{H})}];  \gamma_{51}^{(\mathrm{H})} = (L_2 + L_4) / [L_2 L_4 \mu_5^{(\mathrm{H})} rR];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\beta_{50}^{(\mathbf{H})} = 1 / [L_2 L_4 \mu_5^{(\mathbf{H})} R];  \gamma_{50}^{(\mathbf{H})} = 1 / [L_2 L_4 \mu_5^{(\mathbf{H})} r];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | где $\mu_5^{(\mathrm{H})} = (C_1C_2 + C_1C_3 + C_2C_3)(C_4 + C_5) + (C_1 + C_2)C_4C_5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - | $K_{7}^{(\mathrm{H})} = K_{\mathrm{v}}C_{2}C_{4}C_{6} / \left[\mu_{7}^{(\mathrm{H})}r\right];  \alpha_{74} = \omega_{\pi2}^{2} + \omega_{\pi4}^{2} + \omega_{\pi6}^{2};  \alpha_{72} = \omega_{\pi2}^{2}\omega_{\pi4}^{2} + \omega_{\pi2}^{2}\omega_{\pi6}^{2} + \omega_{\pi4}^{2}\omega_{\pi6}^{2};  \alpha_{70} = \omega_{\pi2}^{2}\omega_{\pi4}^{2}\omega_{\pi6}^{2};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $\beta_{76}^{(\mathrm{H})} = \left[ \left( C_1 C_2 + C_1 C_3 + C_2 C_3 \right) \left( C_4 + C_5 + C_6 \right) + \left( C_1 + C_2 \right) C_4 \left( C_5 + C_6 \right) \right] / \left[ \mu_7^{(\mathrm{H})} R \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | $\gamma_{76}^{(\mathrm{H})} = \left\{ \left[ (C_2 + C_3)(C_4 + C_5) + C_4C_5 \right] (C_6 + C_7) + (C_2 + C_3 + C_4)C_6C_7 \right\} / \left[ \mu_7^{(\mathrm{H})} r \right]; \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\beta_{75}^{(\mathrm{H})} = \left\{ L_2 \left( C_1 C_2 + C_1 C_3 + C_2 C_3 \right) \left[ L_4 \left( C_4 + C_5 + C_7 \right) + L_6 \left( C_6 + C_7 \right) \right] + \left[ L_2 \left( C_1 + C_2 \right) \left( C_5 + C_7 \right) + \left( C_1 + C_3 \right) L_6 \left( C_6 + C_7 \right) \right] \omega_{\mathrm{p}4}^{-2} + C_1 C_2 C_3 + C_2 C_3 \right] \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | + $\left[L_{2}(C_{1}+C_{2})+L_{4}(C_{1}+C_{3}+C_{4})\right]L_{6}(C_{5}C_{6}+C_{5}C_{7}+C_{6}C_{7})\right]/\left[L_{2}L_{4}L_{6}\mu_{7}^{(\mathrm{H})}\right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\gamma_{75}^{(\mathrm{H})} = \left[ \left( C_2 + C_3 \right) C_4 + \left( C_2 + C_3 + C_4 \right) \left( C_5 + C_6 \right) \right] / \left[ \mu_7^{(\mathrm{H})} r R \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\beta_{74}^{(\mathrm{H})} = \left\{ C_1  \omega_{\mathrm{n}2}^{-2} \left( L_4 + L_6 \right) + L_2 \left( C_1 + C_2 \right) \left[ L_4 \left( C_3 + C_4 \right) + L_6 \left( C_3 + C_5 + C_6 \right) \right] + L_6 \left( C_4 + C_5 \right) \right] + L_6 \left( C_4 + C_5 \right) \left[ L_4 \left( C_4 + C_5 \right) + L_6 \left( C_4 + C_5 \right) \right] + L_6 \left( C_4 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_4 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_4 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_6 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_6 \left( C_5 + C_5 \right) \right] \right] + L_6 \left( C_5 + C_5 \right) \left[ L_6 \left( C_5 + C_5 \right) \right] + L_6 \left( C_5 + C_5 \right) \left[ L_6 \left( C_5 + C_5 \right) \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | $+L_4L_6[(C_1+C_3)C_4+(C_1+C_3+C_4)(C_5+C_6)]]/[L_2L_4L_6\mu_7^{(H)}R];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _ | $\gamma_{74}^{(\mathrm{H})} = \left\{ L_2 L_4 \left[ \left( C_2 + C_3 \right) C_4 + \left( C_2 + C_3 + C_4 \right) \left( C_5 + C_7 \right) \right] + \left[ L_2 \left( C_2 + C_3 + C_5 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] + L_4 \left( C_4 + C_5 \right) \left[ L_6 \left( C_6 + C_7 \right) + L_4 \left( C_4 + C_5 \right) \right] L_6 \left( C_6 + C_7 \right) \right] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| / | + $(L_2 + L_4) \omega_{\pi 6}^{-2} C_7 \} / [L_2 L_4 L_6 \mu_7^{(H)} r];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $\beta_{73}^{(\mathrm{H})} = \left\{ L_2 \left[ C_1 C_2 + (C_1 + C_2)(C_3 + C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3 + C_4)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 + C_3)(C_5 + C_7) \right] + L_4 \left[ (C_1 + C_3)C_4 + (C_1 +$ |
|   | + $L_6[(C_1+C_3+C_5)(C_6+C_7)+C_6C_7]]/[L_2L_4L_6\mu_7^{(H)}];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\gamma_{73}^{(\mathbf{H})} = \left[ L_2 (C_2 + C_3) (L_4 + L_6) + (L_2 + L_4) L_6 (C_5 + C_6) + (L_2 + L_6) \omega_{p4}^{-2} \right] / \left[ L_2 L_4 L_6 \mu_7^{(\mathbf{H})} r R \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | $\beta_{72}^{(\mathrm{H})} = \left[ L_2(C_1 + C_2) + L_4(C_1 + C_3 + C_4) + L_6(C_1 + C_3 + C_5 + C_6) \right] / \left[ L_2 L_4 L_6 \mu_7^{(\mathrm{H})} R \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | $\gamma_{72}^{(\mathrm{H})} = \left[ L_2 \left( C_2 + C_3 + C_5 + C_7 \right) + L_4 \left( C_4 + C_5 + C_7 \right) + L_6 \left( C_6 + C_7 \right) \right] / \left[ L_2 L_4 L_6 \mu_7^{(\mathrm{H})} r \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\beta_{71}^{(\mathrm{H})} = \left(C_1 + C_3 + C_5 + C_7\right) / \left[L_2 L_4 L_6 \mu_7^{(\mathrm{H})}\right];  \gamma_{71}^{(\mathrm{H})} = \left(L_2 + L_4 + L_6\right) / \left[L_2 L_4 L_6 \mu_7^{(\mathrm{H})} rR\right],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\beta_{70}^{\{H\}} = 1 / \left[ L_2 L_4 L_6 \mu_7^{(H)} R \right],  \gamma_{70}^{(H)} = 1 / \left[ L_2 L_4 L_6 \mu_7^{\{H\}} r \right],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | где $\mu_7^{(\mathrm{H})} = (C_1C_2 + C_1C_3 + C_2C_3)[(C_4 + C_5)(C_6 + C_7) + C_6C_7] + (C_1 + C_2)C_4(C_5C_6 + C_5C_7 + C_6C_7).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Окончание табл. 1

$$\begin{split} \hline \mathbf{K}_{q}^{(n)} = \mathbf{K}_{q}^{c} C_{q}^{c} C_{q}^{c}$$

.....

Представим реализуемую ПФ ФНЧ *n*-го порядка как отношение произведения двучленов и многочлена степени *n*:

$$H_{n \text{H} \text{H}}(s_{\text{H}}) = \frac{K(s_{\text{H}}^2 + a_1)(s_{\text{H}}^2 + a_2)\dots[s_{\text{H}}^2 + a_{(n-1)/2}]}{s_{\text{H}}^n + b_{n-1}s_{\text{H}}^{n-1} + \dots + b_1s_{\text{H}} + b_0}, \quad (4)$$

где коэффициенты *K*, *a<sub>i</sub>*, *b<sub>i</sub>* – вещественные положительные числа.

В зависимости от значений коэффициентов рассматриваемые фильтры являются инверсными фильтрами нижних частот (ИФНЧ) или квазиэллиптическими фильтрами нижних частот (КФНЧ). ИФНЧ характеризуется минимальным затуханием в ПЗ  $\overline{\delta}$ , КФНЧ – неравномерностью АЧХ в полосе пропускания (ПП)  $\tilde{\delta}$  и минимальным затуханием в ПЗ  $\overline{\delta}$ .

При расчете ПФ с полюсами затухания возможен синтез АЧХ по заданному значению частоты подавления помехи в ПЗ. Таких значений может быть выбрано одно для ИФНЧ и 2 для КФНЧ (при n > 3). При этом параметрами, подлежащими определению, являются  $\overline{\delta}$  для ИФНЧ,  $\overline{\delta}$  и  $\overline{\delta}$ для КФНЧ. В [6] приведены системы уравнений для определения параметров реализуемой АЧХ фильтров при нечетном *n*:

$$H_{n \rm HY}(\omega_{\rm H}) = \frac{K \left| \prod_{l=1}^{(n-1)/2} \left( \omega_{\rm H}^2 - a_l \right) \right|}{\sqrt{D_{\rm H1}^2 + D_{\rm H2}^2}},$$
 (5)

где

$$D_{\rm H1} = \omega_{\rm H}^{n} + \sum_{j=1}^{(n-1)/2} (-1)^{j} b_{n-2j} \, \omega_{\rm H}^{n-2j};$$
$$D_{\rm H2} = \sum_{j=0}^{(n-1)/2} (-1)^{j} b_{n-1-2j} \, \omega_{\rm H}^{n-1-2j}.$$

Для расчета параметров ФНЧ приравняем коэффициенты при одинаковых степенях переменной  $s_{\rm H}$ в выражениях  $H_{n\Phi \rm H\Psi}(s_{\rm H})$  (3) и  $H_{n\rm H\Psi}(s_{\rm H})$  (4). Число составленных уравнений равно (3n+1)/2, а число неизвестных параметров ФНЧ с полюсами затухания (3n+5)/2, поэтому 2 параметра задаются произвольно. В общем случае система уравнений имеет несколько решений с положительными значениями неизвестных, из которых к реализации должно быть принято одно решение. Рассматривая схему, приведенную на рис. 1, со стороны входных зажимов как двухполюсник, обратимся к ее входному комплексному сопротивлению Z(s). Схема двухполюсника реализуема, если все нули и полюсы функции Z(s) находятся в левой полуплоскости переменной p [7]. Перейдем в выражениях для  $H_{n\Phi H\Psi}(s_{H})$  к ненормированной переменной s, умножив числитель и знаменатель рациональной дроби на  $\omega_{c}^{n}$ . После выполнения сокращений найдем, что знаменатель ПФ  $H_{n\Phi H\Psi}(s)$  и числитель функции  $Z_{n\Phi H\Psi}(s)$  совпадают, а следовательно, совпадают полюсы и нули этих функции  $H_{n\Phi H\Psi}(s_{H})$  в виде произведения сомножителей:

$$(s_{\rm H} - p_{\rm H0})(s_{\rm H} - p_{\rm H1})(s_{\rm H} - p_{\rm H2})(s_{\rm H} - p_{\rm H3}) \times \times (s_{\rm H} - p_{\rm H4}) \dots [s_{\rm H} - p_{\rm H(n-2)}][s_{\rm H} - p_{\rm H(n-1)}],$$
(6)

где  $p_{\rm H0} = -\sigma_{\rm H0}$ ,  $p_{\rm H1} = -\sigma_{\rm H1} + j\omega_{\rm H1}$ ,  $p_{\rm H2} = -\sigma_{\rm H2} + j\omega_{\rm H2}$ , ... – корни знаменателя. Как показано в [6], коэффициенты  $b_{n-1}$ ,  $b_{n-2}$ , ...,  $b_0$  знаменателя ПФ выбираются такими, чтобы указанные корни лежали в левой полуплоскости переменной  $p_{\rm H}$ . После умножения на  $\omega_{\rm c}^n$  выражение (6) принимает вид

$$(s - p_{\rm H0} \,\omega_{\rm c})(s - p_{\rm H1} \,\omega_{\rm c}) \times$$
$$\times (s - p_{\rm H2} \,\omega_{\rm c})(s - p_{\rm H3} \,\omega_{\rm c})(s - p_{\rm H4} \,\omega_{\rm c}) \dots$$
$$\dots [s - p_{\rm H(n-2)} \,\omega_{\rm c}][s - p_{\rm H(n-1)} \,\omega_{\rm c}].$$
(7)

Выражение (7) представляет собой разложение на сомножители числителя функции  $Z_{n\Phi H\Psi}(s)$ , причем  $p_{H0} \omega_c$ ,  $p_{H1} \omega_c$ , ...,  $p_{H(n-1)} \omega_c$  – корни (нули) числителя, лежащие в левой полуплоскости комплексной переменной *p*. Таким образом, проверке подлежат только полюсы функции  $Z_{n\Phi H\Psi}(s)$ .

Из совпадения выражений знаменателя ПФ  $H_{n\Phi H\Psi}(s)$  и числителя функции  $Z_{n\Phi H\Psi}(s)$  следует также равенство нулей  $Z_{n\Phi H\Psi}(s)$  для всех найденных решений системы уравнений.

Если условия реализуемости схемы выполняются, все решения системы уравнений являются истинными. Однако расположение корней уравнений числителя и знаменателя функции Z(s) в левой полуплоскости комплексной переменной является необходимым, но не достаточным условием для принятия к реализации того или иного решения системы. Исследуем зависимость амплитудно-частотной и фазочастотной характеристик синтезируемого фильтра от изменения ряда параметров. В качестве меры отклонения реальной АЧХ  $H_{n\Phi H\Psi}(\omega, \chi_j)$  от синтезируемой АЧХ  $H_{n\Phi H\Psi}(\omega, \chi_{ji})$  при отклонении параметра  $\chi_j$  от расчетного для *i*-го решения значения  $\chi_{ji}$  на величину  $\delta\chi_{ji}$  примем значение определенного интеграла на отрезке  $[0, \omega_{\Pi 3}]$  квадрата разности функций  $H_{n\Phi H\Psi}(\omega, \chi_j)$  и  $H_{n\Phi H\Psi}(\omega, \chi_{ji})$ :

$$I_{n\Phi H\Psi_{i}}^{H}(\chi_{j}) = \int_{0}^{\omega_{\Pi 3}} \left[ H_{n\Phi H\Psi}(\omega,\chi_{j}) - H_{n\Phi H\Psi}(\omega,\chi_{ji}) \right]^{2} d\omega.$$
(8)

Значение интеграла (8) зависит от длины отрезка оси частот, задающего верхний предел интегрирования. Выбор частоты  $\omega_{\Pi 3}$  правее крайнего полюса затухания в ПЗ позволяет учесть характер искажений в большей части области реализации АЧХ.

Устойчивость АЧХ по параметру  $\chi_j$  определим как величину, обратную среднему значению функции  $I_{n\Phi H\Psi_i}^H(\chi_j)$  в области изменения параметра  $(1\mp \Delta)\chi_{ji}$ :

$$s_{n\Phi H\Psi_{i}}^{H} \langle \chi_{j} \rangle = = \left[ \frac{1}{2\Delta\chi_{ji}} \int_{(1-\Delta)\chi_{ji}}^{(1+\Delta)\chi_{ji}} I_{n\Phi H\Psi_{i}}^{H} (\chi_{j}) d\chi_{j} \right]^{-1}.$$
 (9)

 $I_{n\Phi H \Psi i}^{H}(\chi_{j})$  в (8) выражается в рад/с,  $s_{n\Phi H \Psi i}^{H}(\chi_{i})$  в (9) – в (рад/с)<sup>-1</sup>.

Подставив в (9) подынтегральную функцию (8), найдем окончательно:

$$s_{n\Phi H\Psi_{i}}^{H} \langle \chi_{j} \rangle =$$

$$= \left\{ \frac{1}{2\Delta\chi_{ji}} \int_{(1-\Delta)\chi_{ji}}^{(1+\Delta)\chi_{ji}} \int_{0}^{\omega_{\Pi 3}} \left[ H_{n\Phi H\Psi} (\omega, \chi_{j}) - H_{n\Phi H\Psi} (\omega, \chi_{ji}) \right]^{2} d\omega d\chi_{j} \right\}^{-1}.$$

Комплексной оценкой устойчивости АЧХ к изменению параметров фильтра может служить обратная сумма средних значений функций  $I_{n\Phi H\Psi i}^{H}(\chi_{j})$ для определенного набора элементов  $\chi_{j}$ :

$$S_{n\Phi H\Psi_{i}}^{H} = \\ = \left(\sum_{j} \left[ \frac{1}{2\Delta\chi_{ji}} \int_{(1-\Delta)\chi_{ji}}^{(1+\Delta)\chi_{ji}\omega_{\Pi3}} \int_{0}^{(1+\Delta)\chi_{ji}} \int_{0}^{0} \left[ H_{n\Phi H\Psi}(\omega,\chi_{j}) - H_{n\Phi H\Psi}(\omega,\chi_{ji}) \right]^{2} d\omega d\chi_{j} \right)^{-1}.$$
(10)

Для оценки устойчивости фазочастотной характеристики (ФЧХ)

$$\varphi_{n\Phi HY}(\omega) = \arg H_{n\Phi HY}(s)$$

к изменениям параметров фильтра введем функцию

$$I_{n\Phi H\Psi i}^{\Psi}(\chi_{j}) =$$

$$= \int_{0}^{\omega_{10}} \left[ \varphi_{n\Phi H\Psi}(\omega, \chi_{j}) - \varphi_{n\Phi H\Psi}(\omega, \chi_{ji}) \right]^{2} d\omega,$$

где  $\omega_{10}$  – первая частота максимального подавления помехи;  $\phi_{n\Phi H \Psi}(\omega, \chi_j) = \arg H_{n\Phi H \Psi}(s, \chi_j) - \Phi \Psi X$ как функция параметра  $\chi_j$ ;

$$\varphi_{n\Phi H\Psi}\left(\omega,\chi_{ji}\right) = \arg H_{n\Phi H\Psi}\left(s,\chi_{ji}\right)$$

 – ΦЧХ при значении параметра фильтра χ<sub>j</sub> для *i*-го решения.

Для уменьшения объема вычислений при интегрировании следует исключить области, где функции  $\varphi_{n\Phi H\Psi} \left[ \omega, (1 \pm \Delta) \chi_{ji} \right]$  претерпевают скачки на  $\pi$  радиан. Границы областей определяются из уравнений

$$\varphi_{n\Phi H\Psi} \Big[ \omega, (1 \pm \Delta) \chi_{ji} \Big] = -k\pi/2, \quad k = 1, 3, \dots$$

Устойчивость ФЧХ в ПП фильтра определим по аналогии с (10) как обратную сумму средних значений функций  $I_{n\Phi H\Psi i}^{\phi}(\chi_j)$  в тех же областях изменения того же ряда параметров:

$$S_{n\Phi H\Psi_{i}}^{\Phi} = \left\{ \sum_{j} \left\{ \frac{1}{2\Delta\chi_{ji}} \int_{(1-\Delta)\chi_{ji}}^{(1+\Delta)\chi_{ji}} \int_{0}^{\omega} \left[ \varphi_{n\Phi H\Psi} \left( \omega, \chi_{j} \right) - \varphi_{n\Phi H\Psi} \left( \omega, \chi_{ji} \right) \right]^{2} d\omega d\chi_{j} \right\} \right\}^{-1}.$$
(11)

Из соотношений (10) и (11) следует, что величины  $S_{n\Phi H \Psi_i}^H$  и  $S_{n\Phi H \Psi_i}^{\phi}$  выражаются в  $(pad/c)^{-1}$  и  $(pad^3/c)^{-1}$  соответственно.

**Пример.** Рассчитаем ИФНЧ третьего порядка (рис. 2) с частотой среза  $\omega_c = 10^5$  рад/с и частотой максимального подавления помехи в ПЗ  $\overline{\omega}_{10} = 2.4 \omega_c$  ( $\overline{\omega}_{H10} = 2.4$ ).



Неизвестными параметрами АЧХ  $\overline{H}_3(\overline{\omega}_{\rm H})$  являются: коэффициенты  $\overline{K}$ ,  $\overline{b}_2$ ,  $\overline{b}_1$ ,  $\overline{b}_0$ ; нормированные абсцисса локального максимума в ПЗ  $\overline{\omega}_{\rm H1max}$  и граница  $\overline{r}_{\rm H} > 1$  отрезка частотной оси, где АЧХ спадает до уровня  $\overline{H}_3(\overline{\omega}_{\rm H1max})$ ; абсцисса отрезка  $\overline{d}_{\rm H} < 1$ , определяемая из условия  $\overline{H}_3(\overline{d}_{\rm H}) = 1 - \overline{H}_3(\overline{r}_{\rm H})$ , а также минимальное затухание в ПЗ  $\overline{\delta} = -20 \lg \overline{H}_3(\overline{\omega}_{\rm H1max})$ . В соответствии с (5) коэффициент  $\overline{a}_1 = \overline{\omega}_{\rm H10}^2 = 5.76$ . Система восьми уравнений для определения параметров АЧХ имеет вид [6]

$$\begin{cases} \left(\overline{K}/\overline{b}_{0}\right)\overline{a}_{l} = 1; \\ \overline{H}_{3}\left(\overline{d}_{H}\right) = 1 - \overline{H}_{3}\left(\overline{r}_{H}\right); \\ \overline{H}_{3}\left(1\right) = 1/\sqrt{2}; \\ \overline{H}_{3}\left(\overline{\omega}_{H1\max}\right) = \overline{H}_{3}\left(\overline{r}_{H}\right); \\ d\overline{H}_{3}\left(\overline{\omega}_{H1\max}\right)/d\overline{\omega}_{H1\max} = 0; \\ \sqrt{\overline{a}_{l}} = \overline{k}_{1r_{0}}\overline{r}_{H}; \\ \overline{\omega}_{H1\max} = \overline{k}_{1r\max}\overline{r}_{H}; \\ \overline{\delta} = -20 \lg \overline{H}_{3}\left(\overline{\omega}_{H1\max}\right), \end{cases}$$

где

$$\begin{split} \overline{H}_{3}(\overline{\omega}_{\mathrm{H}}) &= \overline{K} \left| \overline{\omega}_{\mathrm{H}}^{2} - \overline{a}_{\mathrm{l}} \right| / \sqrt{\left( \overline{\omega}_{\mathrm{H}}^{3} - \overline{b}_{\mathrm{l}} \,\overline{\omega}_{\mathrm{H}} \right)^{2} + \left( \overline{b}_{2} \,\overline{\omega}_{\mathrm{H}}^{2} - \overline{b}_{0} \right)^{2}}; \\ \overline{k}_{\mathrm{l}r_{0}} &= 1.1547005384; \quad \overline{k}_{\mathrm{l}r \max} = 2. \end{split}$$

Решение системы уравнений с положительными коэффициентами полинома знаменателя:

$$\overline{\delta} = 29.454 \text{ dB}; \ \overline{K} = 0.210084; \ \overline{b}_2 = 2.070831;$$
  
 $\overline{b}_1 = 2.122103; \ \overline{b}_0 = 1.210084; \ \overline{r}_{\text{H}} = 2.078461;$ 

$$\overline{d}_{\rm H} = 0.667424; \ \overline{\omega}_{\rm H1max} = 4.156922.$$

Нормированная ширина переходной области АЧХ  $\overline{r}_{\rm H} - \overline{d}_{\rm H} = 1.411037.$ 

Приравняв коэффициенты при одинаковых степенях переменной  $s_{\rm H}$  в выражениях  $H_{3 \oplus {\rm H} {\rm H}}(s_{\rm H})$ и  $H_{3 {\rm H} {\rm H}}(s_{\rm H})$ , получим систему пяти уравнений для определения семи неизвестных параметров фильтра (r,  $C_1$ ,  $L_2$ ,  $C_2$ ,  $C_3$ , R,  $K_{\rm V}$ ):

$$\begin{cases} \omega_{c}^{2} L_{2}C_{2} = 1/a_{1}; \\ \frac{(C_{1} + C_{2})r + (C_{2} + C_{3})R}{\omega_{c} (C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3})rR} = b_{2}; \\ \frac{(C_{1} + C_{3})rR + L_{2}}{\omega_{c}^{2} L_{2} (C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3})rR} = b_{1}; \\ \frac{r + R}{\omega_{c}^{3} L_{2} (C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3})rR} = b_{0}; \\ \frac{K_{y}C_{2}}{\omega_{c} (C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3}r)} = K. \end{cases}$$
(12)

Система (12) является общей для расчета параметров ИФНЧ и КФНЧ. Примем для ИФНЧ  $C_1 = 100$  нФ,  $C_2 = 10$  нФ. При заданных начальных условиях система уравнений (12)) имеет три решения (i = 1, 2, 3) с положительными значениями неизвестных:

1.  $L_2 = 1.736$  мГн,  $C_3 = 79.5$  нФ, r = 87.7 Ом, R = 110.3 Ом,  $K_y = 1.79$ .

2. *L*<sub>2</sub> =1.736 мГн, *C*<sub>3</sub> = 77.1 нФ, *r* =100.6 Ом, *R* =100.3 Ом, *K*<sub>y</sub> = 2.

3.  $L_2 = 1.736$  мГн,  $C_3 = 25.4$  нФ, r = 820.1 Ом, R = 148.3 Ом,  $K_y = 6.53$ .

Входное комплексное сопротивление схемы (рис. 2) определяется следующим образом:  $Z_{3\Phi H\Psi}(s) = r (N_{3\Phi H\Psi}/D_{3\Phi H\Psi});$  где

$$\begin{split} N_{3\Phi H\Psi} &= s^3 + \frac{(C_1 + C_2)r + (C_2 + C_3)R}{(C_1C_2 + C_1C_3 + C_2C_3)rR}s^2 + \\ &+ \frac{(C_1 + C_3)rR + L_2}{L_2(C_1C_2 + C_1C_3 + C_2C_3)rR}s + \\ &+ \frac{r + R}{L_2(C_1C_2 + C_1C_3 + C_2C_3)rR}; \\ D_{3\Phi H\Psi} &= s^3 + \frac{C_1 + C_2}{(C_1C_2 + C_1C_3 + C_2C_3)R}s^2 + \end{split}$$

$$+\frac{C_1+C_3}{L_2(C_1C_2+C_1C_3+C_2C_3)}s+$$
$$+\frac{1}{L_2(C_1C_2+C_1C_3+C_2C_3)R}.$$

Нули функции  $Z_{3\Phi HY}(s)$  для всех указанных решений одинаковы и составляют

 $p_1^0 = -114045.8, \ p_{2,3}^0 = -46518.7 \pm j91905.0.$ 

Полюсы для этих решений имеют значения:

- 1)  $p_1^* = -65397.1, p_{2,3}^* = -18472.0 \pm j88618.7;$
- 2)  $p_1^* = -77655.7$ ,  $p_{2,3}^* = -19031.6 \pm j86260.0$ ;
- 3)  $p_1^* = -107160.4$ ,  $p_{2,3}^* = -44272.8 \pm j87195.4$ .

В качестве примера на рис. 3 представлены зависимости  $I_{3\Phi H \Psi_i}^H(C_1)$ ,  $I_{3\Phi H \Psi_i}^H(C_2)$ ,  $I_{3\Phi H \Psi_i}^H(C_3)$ ,  $I_{3\Phi H \Psi_i}^H(R)$  для  $\omega_{\Pi 3} = 3 \cdot 10^5$  при изменении параметров  $\chi_i$  в пределах  $\chi_{ji} \pm 0.1 \chi_{ji}$ .

Влияние на АЧХ ИФНЧ отклонения емкостей  $C_1$ ,  $C_2$ ,  $C_3$ , индуктивности  $L_2$  и резисторов *r*, *R* от расчетных значений на величину  $\pm \Delta \chi_{ji} = \pm 0.1 \chi_{ji}$  оценим с помощью характеристик устойчивости, имеющих значения:  $\overline{S}_{3\Phi H \Psi_1}^H = 0.0031$ ;  $\overline{S}_{3\Phi H \Psi_2}^H = 0.0029$ ;  $\overline{S}_{3\Phi H \Psi_3}^H = 0.0017$  (единицы измерения характеристик опущены).



ФЧХ ФНЧ третьего порядка имеет вид

$$\varphi_{3\Phi HY}(\omega) = \operatorname{arctg} \left[ N_{3\Phi HY}(\omega) / D_{3\Phi HY}(\omega) \right],$$

где

$$N_{3\Phi H\Psi}(\omega) = \left[ (C_1 + C_3) rR + L_2 \right] \omega - \\ - \left[ L_2 (C_1 C_2 + C_1 C_3 + C_2 C_3) rR \right] \omega^3; \\ D_{3\Phi H\Psi}(\omega) = \\ L_2 \left[ (C_1 + C_2) r + (C_2 + C_3) R \right] \omega^2 - (r + R).$$

Интегралы квадрата разности функций  $\varphi_{3\Phi H \Psi}(\omega, \chi_j)$  и  $\varphi_{3\Phi H \Psi}(\omega, \chi_{ji})$  на отрезке [0, 2.4  $\omega_c$ ] записываются как

$$I_{3\Phi H\Psi_{i}}^{\varphi}(\chi_{j}) =$$

$$= \int_{0}^{\omega_{1}} \left[ \varphi_{3\Phi H\Psi}(\omega, \chi_{j}) - \varphi_{3\Phi H\Psi}(\omega, \chi_{ji}) \right]^{2} d\omega +$$

$$+ \int_{\omega_{2}}^{2.4\omega_{c}} \left[ \varphi_{3\Phi H\Psi}(\omega, \chi_{j}) - \varphi_{3\Phi H\Psi}(\omega, \chi_{ji}) \right]^{2} d\omega$$

где  $\omega_1$  и  $\omega_2$  – решения уравнений

$$\varphi_{3\Phi HY} \Big[ \omega_{1,2}, (1 \pm 0.1) \chi_{ji} \Big] = -\pi/2.$$

Устойчивость ФЧХ для трех решений системы уравнений при изменении параметров в областях  $\chi_{ji} \pm 0.1 \chi_{ji}$  рассчитана по (11):  $\overline{S}_{3\Phi H \Psi_1}^{\phi} = 0.0012$ ;  $\overline{S}_{3\Phi H \Psi_2}^{\phi} = 0.0012$  и  $\overline{S}_{3\Phi H \Psi_3}^{\phi} = 0.0011$ .



Наиболее различаются величины  $\overline{S}_{3\Phi H \Psi_2}^H$ . С учетом того, что номиналы четырех из шести элементов  $C_1$ ,  $C_2$ , r и R во втором решении соответствуют рядам предпочтительных значений для резисторов и конденсаторов E24, E12, E6 и не требуют корректировки, принимаем к реализации второе решение. После перехода к ряду E24 имеем номиналы элементов:  $C_1 = 100$  нФ,  $C_2 = 10$  нФ,  $L_2 =$ = 1.736 мГн,  $C_3 = 75$  нФ, r = 100 Ом, R = 100 Ом. Коэффициент усиления усилителя  $K_V = 2$ .

При ином наборе элементов схема на рис. 2, реализует КФНЧ. Учитывая возможность выбора для КФНЧ двух параметров, положим при частоте максимального подавления помехи  $\tilde{\omega}_{10} = 2.4 \,\omega_c$  минимальное затухание в ПЗ  $\bar{\delta} = 35 \, \text{дБ}$ . При тех же начальных условиях число решений системы уравнений (12) i = 2:

1.  $L_2 = 1.736 \text{ мГн}$ ,  $C_3 = 118.3 \text{ нФ}$ , r = 123.3 Ом, R = 146.8 Ом,  $K_y = 1.86$ . 2.  $L_2 = 1.736 \text{ мГн}$ ,  $C_3 = 122.0 \text{ нФ}$ , r = 144.5 Ом, R = 118.4 Ом,  $K_y = 2.25$ .

Опустив промежуточные выкладки, приведем значения устойчивости АЧХ и ФЧХ КФНЧ для обоих наборов элементов:  $\tilde{S}_{3\Phi H \Psi_1}^H = 0.0030$ ,  $\tilde{S}_{3\Phi H \Psi_2}^H = 0.0027$  и  $\tilde{S}_{3\Phi H \Psi_1}^{\phi} = \tilde{S}_{3\Phi H \Psi_2}^{\phi} = 0.0011$ . Принимаем к исполнению первое решение; окончательные параметры КФНЧ:  $C_1 = 100$  нФ,  $C_2 = 10$  нФ,  $L_2 = 1.736$  мГн,  $C_3 = 120$  нФ, r = 120 Ом, R = 150 Ом,  $K_y = 1.82$ . Неравномерность АЧХ КФНЧ в ПП  $\tilde{\delta} = 0.2$  дБ.

Из сравнения зависимостей  $\overline{H}_{3\Phi H\Psi}(\omega)$  и  $\overline{\tilde{H}}_{3\Phi H\Psi}(\omega)$  (рис. 4) следует, что предпочтительной является реализация КФНЧ.

Фильтры верхних частот. При использовании в поперечных ветвях схемы (рис. 1) индуктивностей  $L_k$  (k = 1, 3, ..., n) а в продольных ветвях – параллельных колебательных контуров с элементами  $L_m$ ,  $C_m$  (m = 2, 4, ..., n-1) образуется фильтр верхних частот (ФВЧ) *n*-го порядка с полюсами затухания в ПЗ. Сопротивления поперечных и продольных ветвей ФВЧ определяются как  $Z_k = sL_k$  и  $Z_m = sL_m/(s^2L_mC_m + 1)$  соответ-



ственно. Подставив  $Z_k$  и  $Z_m$  в (1), (2), запишем ПФ  $H_{n\Phi B\Psi}(s_{H})$ , АЧХ  $H_{n\Phi B\Psi}(\omega)$  и входное сопротивление  $Z_{n\Phi B\Psi}(s)$  ФВЧ *n*-го порядка:

$$\begin{split} H_{n \Phi B \Psi}\left(s_{H}\right) &= \\ &= \frac{K_{Y}R}{r+R} s_{H} \left[ s_{H}^{n-1} + \sum_{i=1}^{(n-1)/2} \omega_{c}^{-2i} \alpha_{n(n-1-2i)} s_{H}^{n-1-2i} \right], \\ &= \frac{K_{Y}R}{r+R} \omega_{c}^{n-1} \left[ \beta_{n(n-i)}^{(B)} + \gamma_{n(n-i)}^{(B)} \right] s_{H}^{n-i}}{H_{n \Phi B \Psi}\left(\omega\right)} \\ &= \frac{K_{Y}R}{r+R} \omega_{c}^{n-1} + \sum_{i=1}^{(n-1)/2} (-1)^{i} \alpha_{n(n-1-2i)} \omega^{n-1-2i} \right], \\ &= \frac{\sqrt{\left[D_{1}^{(B)}\right]^{2} + \left[D_{2}^{(B)}\right]^{2}}}{\sqrt{\left[D_{1}^{(B)}\right]^{2} + \left[D_{2}^{(B)}\right]^{2}}}, \\ &Z_{n \Phi B \Psi}\left(s\right) = (r+R) \frac{s^{n} + \sum_{i=1}^{n} \left[\beta_{n(n-i)}^{(B)} + \gamma_{n(n-i)}^{(B)}\right] s^{n-i}}{s^{n} + \frac{r+R}{r} \sum_{i=1}^{n} \beta_{n(n-i)}^{(B)} s^{n-i}}, \end{split}$$

где коэффициенты  $\alpha_{ni}$ ,  $\beta_{ni}^{(B)}$ ,  $\gamma_{ni}^{(B)}$  – функции параметров фильтра;

$$D_{1}^{(B)} = \omega^{n} + \sum_{i=1}^{(n-1)/2} (-1)^{i} \left[ \beta_{n(n-2i)}^{(B)} + \gamma_{n(n-2i)}^{(B)} \right] \omega^{n-2i};$$
  
$$D_{2}^{(B)} = \sum_{i=0}^{(n-1)/2} (-1)^{i} \left[ \beta_{n(n-1-2i)}^{(B)} + \gamma_{n(n-1-2i)}^{(B)} \right] \omega^{n-1-2i};$$

(верхний индекс "в" указывает на принадлежность коэффициентов ФВЧ).

Выражения для коэффициентов  $\Phi B \Psi$  порядков n = 3, 5, 7, 9 приведены в табл. 2.

Получим аналитическое выражение реализуемой ПФ ФВЧ  $H_{nB^{\text{H}}}(s_{\text{H}})$ , применив преобразование  $s_{\text{H}} \rightarrow l/s_{\text{H}}$  [5] к ПФ фильтра-прототипа нижних частот  $H_{nH^{\text{H}}}(s_{\text{H}})$ . Выполнив преобра-

|   | Таблица 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n | Коэффициенты                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\alpha_{30} = \omega_{p2}^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $\beta_{32}^{(\mathbf{H})} = (L_1 + L_3) r R / [L_1 L_3 (r+R)];  \gamma_{32}^{(\mathbf{B})} = 1 / [C_2 (r+R)];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 | $\beta_{31}^{(B)} = (L_1 + L_2)r / [L_1 \mu_3^{(B)}]; \ \gamma_{31}^{(B)} = (L_2 + L_3)R / [L_3 \mu_3^{(B)}];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $\beta_{30}^{(\mathbf{B})} = (L_1 + L_2 + L_3) r R / [L_1 L_3 \mu_3^{(\mathbf{B})}];  \gamma_{30}^{(\mathbf{B})} = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | где $\mu_3^{(B)} = \omega_{p2}^{-2}(r+R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | <i>n</i> = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\alpha_{52} = \omega_{p2}^2 + \omega_{p4}^2; \ \alpha_{50} = \omega_{p2}^2 \omega_{p4}^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | $\beta_{54}^{(B)} = (L_1 L_3 + L_1 L_5 + L_3 L_5) r R / [L_1 L_3 L_5 (r+R)];  \gamma_{54}^{(B)} = (C_2 + C_4) / [C_2 C_4 (r+R)];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $\beta_{53}^{(\mathbf{B})} = \left[ \omega_{\mathbf{p}2}^{-2} (L_1 L_3 + L_1 L_4 + L_3 L_4) + \omega_{\mathbf{p}4}^{-2} (L_1 + L_2) L_3 \right] r / \left[ L_1 L_3 \mu_5^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $\gamma_{53}^{(\mathbf{B})} = \left[ \omega_{\mathbf{p}2}^{-2} L_3 (L_4 + L_5) + \omega_{\mathbf{p}4}^{-2} (L_2 L_3 + L_2 L_5 + L_3 L_5) \right] R / \left[ L_3 L_5 \mu_5^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 | $\beta_{52}^{(\mathbf{B})} = \left\{ \omega_{p2}^{-2} \left[ (L_1 + L_3) (L_4 + L_5) + L_1 L_3 \right] + \omega_{p4}^{-2} \left[ (L_1 + L_2) (L_3 + L_5) + L_3 L_5 \right] \right\} r R / \left[ L_1 L_3 L_5 \mu_5^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | $\gamma_{52}^{(\mathbf{B})} = \left( L_2 L_3 + L_2 L_4 + L_3 L_4 \right) / \left[ L_3 \mu_5^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\beta_{51}^{(\mathbf{B})} = \left[ (L_1 + L_2)(L_3 + L_4) + L_3L_4 \right] r / \left[ L_1L_3 \mu_5^{(\mathbf{B})} \right];  \gamma_{51}^{(\mathbf{B})} = \left[ L_2L_3 + (L_2 + L_3)(L_4 + L_5) \right] R / \left[ L_3L_5 \mu_5^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | $\beta_{50}^{(\mathbf{B})} = \left[ \left( L_1 + L_2 \right) L_3 + \left( L_1 + L_2 + L_3 \right) \left( L_2 + L_5 \right) \right] r R / \left[ L_1 L_3 L_5 \mu_3^{(\mathbf{B})} \right];  \gamma_{60}^{(\mathbf{B})} = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | где $\mu_5^{(B)} = \omega_{p2}^{-2} \omega_{p4}^{-2} (r+R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | <i>n</i> = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\alpha_{74} = \omega_{p2}^2 + \omega_{p4}^2 + \omega_{p6}^2;  \alpha_{72} = \omega_{p2}^2 \omega_{p4}^2 + \omega_{p2}^2 \omega_{p6}^2 + \omega_{p4}^2 \omega_{p6}^2;  \alpha_{70} = \omega_{p2}^2 \omega_{p4}^2 \omega_{p6}^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\beta_{76}^{(8)} = \left[ (L_1 + L_3)L_5L_7 + L_1L_3(L_5 + L_7) \right] rR / \left[ L_1L_3L_5L_7(r+R) \right];  \gamma_{76}^{(8)} = \left( C_2C_4 + C_2C_6 + C_4C_6 \right) / \left[ C_2C_4C_6(r+R) \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $\beta_{75}^{(\mathbf{B})} = \left\{ \omega_{p2}^{-2} \omega_{p4}^{-2} \left[ \left( L_1 + L_3 \right) L_5 L_6 + L_1 L_3 \left( L_5 + L_6 \right) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left( L_1 L_3 + L_1 L_4 + L_3 L_4 \right) L_5 + \omega_{p4}^{-2} \omega_{p6}^{-2} \left( L_1 + L_2 \right) L_3 L_5 \right\} r / \left[ L_1 L_3 L_5 \mu_7^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\gamma_{75}^{(\mathbf{B})} = \left\{ \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}4}^{-2} L_3 L_5 \left( L_6 + L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 + L_5 L_7 \right) + \omega_{\mathbf{p}2}^{-2} \omega_{\mathbf{p}6}^{-2} L_3 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_4 L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_4 L_7 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_4 L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_4 L_7 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 + L_4 L_7 \right) + \omega_{\mathbf{p}2}^{-2} L_5 \left( L_4 L_5 \right) + \omega_{p$ |
|   | $+ \omega_{p4}^{-2} \omega_{p6}^{-2} \Big[ (L_2 + L_3) L_5 L_7 + L_2 L_3 (L_5 + L_7) \Big] \Big\} R \Big/ \Big[ L_3 L_5 L_7 \mu_7^{(B)} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $\beta_{74}^{(B)} = \left\{ \omega_{p2}^{-2} \omega_{p4}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 L_7 + (L_1 L_3 + L_1 L_4 + L_3 L_4) (L_5 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_6 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_7) \right] + \omega_{p2}^{-2} \omega_{p6}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + L_1 L_3 (L_5 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_3) L_5 (L_7 + L_7) + L_1 L_3 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_3) L_5 (L_7 + L_7) + L_1 L_3 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_3) L_5 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{-2} \left[ (L_1 + L_7) + L_1 L_7 (L_7 + L_7) \right] + \omega_{p2}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | $+ \omega_{p4}^{-2} \omega_{p6}^{-2} \Big[ (L_1 + L_2 + L_3) L_5 L_7 + (L_1 + L_2) L_3 (L_5 + L_7) \Big] \Big\} r R \Big/ \Big[ L_1 L_3 L_5 L_7 \mu_7^{(B)} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | $\gamma_{74}^{(\mathbf{p})} = \left\{ \omega_{\mathbf{p}2}^{-2} L_3 \left( L_4 L_5 + L_4 L_6 + L_5 L_6 \right) + \omega_{\mathbf{p}4}^{-2} \left[ \left( L_2 + L_3 \right) L_5 L_6 + L_2 L_3 \left( L_5 + L_6 \right) \right] + \omega_{\mathbf{p}6}^{-2} \left( L_2 L_3 + L_2 L_4 + L_3 L_4 \right) L_5 \right\} / \left[ L_3 L_5 \mu_7^{(\mathbf{p})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | $\beta_{73}^{(B)} = \left\{ \omega_{p2}^{-2} \left[ (L_1 + L_3) L_5 L_6 + (L_1 L_3 + L_1 L_4 + L_3 L_4) (L_5 + L_6) \right] + \omega_{p4}^{-2} \left[ (L_1 + L_2 + L_3) L_5 L_6 + (L_1 + L_2) L_3 (L_5 + L_6) \right] + (L_1 + L_2) L_5 L_6 + (L_1 + L_2) L_5 L_6 + (L_2 + L_3) L_5 L_6 + (L_3 + L_4) L_5 L_6 + (L_4 + L_3) L_5 L_6 + (L_5 + L_6) \right] + (L_5 + L_6) L_5 L_6 + (L_5 + L_6) L_6 + (L_6 + L_6) L_6 + (L_6 + L_6) L_6 + (L_6 + L_6) L_6 + (L_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 | $+ \omega_{p6}^{-2} \Big[ (L_1 + L_2) (L_3 + L_4) + L_3 L_4 \Big] L_5 \Big\} r / \Big[ L_1 L_3 L_5 \mu_7^{(B)} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\gamma_{73}^{(\mathbf{B})} = \left\{ \omega_{p2}^{-2} L_3 \Big[ (L_4 + L_5) (L_6 + L_7) + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_2 L_3 (L_5 + L_6 + L_7) + (L_2 + L_3) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_4 L_5 (L_6 + L_7) + (L_4 + L_5) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_4 L_5 (L_6 + L_7) + (L_4 + L_5) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_4 L_5 (L_6 + L_7) + (L_4 + L_5) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + \omega_{p4}^{-2} \Big[ L_4 L_5 (L_6 + L_7) + (L_4 + L_5) L_5 (L_6 + L_7) \Big] + L_4 L_5 \Big] + L_5 L_5 \Big] +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $+ \omega_{p6}^{-2} \Big[ (L_2 + L_3) L_5 L_7 + (L_2 L_3 + L_2 L_4 + L_3 L_4) (L_5 + L_7) \Big] \Big\} R \Big/ \Big[ L_3 L_5 L_7 \mu_7^{(B)} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\beta_{72}^{(B)} = \left\{ \omega_{p2}^{-2} \left[ (L_1 + L_3) L_5 (L_6 + L_7) + (L_1 L_3 + L_1 L_4 + L_3 L_4) (L_5 + L_6 + L_7) \right] + \omega_{p4}^{-2} \left[ (L_1 + L_2) L_3 (L_5 + L_6 + L_7) + (L_1 + L_2 + L_3) \times L_5 (L_6 + L_7) \right] \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $\times L_{5}(L_{6}+L_{7})] + \omega_{p6}^{-2} \Big[ (L_{1}+L_{2}+L_{3})L_{5}L_{7} + (L_{1}L_{3}+L_{4}L_{4}+L_{2}L_{3}+L_{2}L_{4}+L_{3}L_{4})(L_{5}+L_{7}) \Big] rR \Big/ \Big[ L_{1}L_{3}L_{5}L_{7}\mu_{7}^{(B)} \Big];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | $\gamma_{72}^{(\mathbf{B})} = \left[ (L_2 + L_3) L_5 L_6 + (L_2 L_3 + L_2 L_4 + L_3 L_4) (L_5 + L_6) \right] / \left[ L_3 L_5 \mu_7^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\beta_{71}^{(\mathfrak{g})} = \left\{ (L_1 + L_2) \left[ (L_3 + L_4) (L_5 + L_6) + L_5 L_6 \right] + L_3 (L_4 L_5 + L_4 L_6 + L_5 L_6) \right\} r / \left[ L_1 L_3 L_5 \mu_7^{(\mathfrak{g})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | $\gamma_{71}^{(\mathbf{B})} = \left[ (L_2 + L_3) L_5 (L_6 + L_7) + (L_2 L_3 + L_2 L_4 + L_3 L_4) (L_5 + L_6 + L_7) \right] R / \left[ L_3 L_5 L_7 \mu_7^{(\mathbf{B})} \right];$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\beta_{70}^{(B)} = \left\{ (L_1 + L_2) \left[ (L_3 + L_4) (L_5 + L_6 + L_7) + L_5 (L_6 + L_7) \right] + L_3 \left[ (L_4 + L_5) (L_6 + L_7) + L_4 L_5 \right] \right\} rR / \left[ L_1 L_3 L_5 L_7 \mu_7^{(B)} \right];  \gamma_{70}^{(B)} = 0,   I_1  + L_5 \left[ L_1 + L_2 \right] \left[ (L_2 + L_3) (L_5 + L_6 + L_7) + L_5 (L_6 + L_7) \right] + L_3 \left[ (L_4 + L_5) (L_6 + L_7) + L_4 L_5 \right] \right\} rR / \left[ L_1 L_3 L_5 L_7 \mu_7^{(B)} \right];  \gamma_{70}^{(B)} = 0,   I_1  + L_5 \left[ L_5 + L_6 + L_7 \right] + L_5 \left[ L_5 + L_6 + L_7 \right] + L_5 \left[ L_6 + L_7 \right] + L_5 \left[ L_6 + L_7 \right] \right] rR / \left[ L_5 + L_6 + L_7 \right] + L_5 \left[ L_6 + L_7 \right] \right] rR / \left[ L_6 + L_7 \right] + L_5 \left[ L_6 + L_7 \right] + L_5 \left[ L_6 + L_7 \right] \right] rR / \left[ L_6 + L_7 \right] rR / \left[ L_7 + L_7 \right] $                                                                                                                                 |
|   | где $\mu_7^{(B)} = \omega_{p2}^{-2} \omega_{p4}^{-2} \omega_{p6}^{-2} (r+R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

.....

Продолжение табл. 2

.....

$$\begin{split} \frac{1}{2} \\ & \frac{1}{2} \\ \frac{1}{2} \\ & \frac{1}{2} \\ \frac{1}{2}$$

зование частоты в (4) при нечетном n, перейдем к ПФ ФВЧ с полюсами затухания:

$$H_{nBH}(s_{H}) = \frac{Ka_{1}a_{2}...a_{(n-1)/2}}{b_{0}} \times \frac{s_{H}\left(s_{H}^{2} + \frac{1}{a_{1}}\right)\left(s_{H}^{2} + \frac{1}{a_{2}}\right)...\left[s_{H}^{2} + \frac{1}{a_{(n-1)/2}}\right]}{s_{H}^{n} + \frac{b_{1}}{b_{0}}s_{H}^{n-1} + ... + \frac{b_{n-1}}{b_{0}}s_{H} + \frac{1}{b_{0}}}.$$
 (13)

Система уравнений, составленная для определения параметров ФВЧ, также может иметь несколько решений, анализ которых с использованием коэффициентов  $\alpha_{ni}$ ,  $\beta_{ni}^{(B)}$ ,  $\gamma_{ni}^{(B)}$  подобен выполненному ранее для ФНЧ с поправками на вид АЧХ и ФЧХ. Так, при вычислении определенного интеграла квадрата разности функций реальной и синтезируемой АЧХ на отрезке  $[0, \omega_{\Pi\Pi}]$  верхний предел интегрирования определяется произвольно выбранным значением частоты  $\omega_{\Pi\Pi}$  в полосе пропускания. При оценке же устойчивости ФЧХ к изменениям параметров фильтра нижний предел интегрирования выбирается равным частоте среза ФВЧ.

Пример. Рассчитаем КФВЧ пятого порядка с нормированными частотами максимального подавления помехи в ПЗ  $\tilde{\overline{\omega}}_{H10} = 0.4$ ,  $\tilde{\overline{\omega}}_{H20} = 0.65$ . Соответствующие частоты КФНЧ-прототипа с нулевыми значениями АЧХ составляют  $1/\tilde{\overline{\omega}}_{H20} =$ = 1.538462 и  $1/\tilde{\overline{\omega}}_{H10} = 2.5$ . Двойной знак над буквой указывает на принадлежность символа к квазиэллиптическому фильтру. На основании (5) найдем коэффициенты  $\tilde{\overline{a}}_l$  числителя функции  $\tilde{\overline{H}}_{5HY}(\omega_{\rm H})$ :

$$\tilde{\overline{a}}_1 = 1.538462^2 = 2.366864; \ \tilde{\overline{a}}_2 = 2.5^2 = 6.25.$$

АЧХ КФНЧ равномерно приближает на отрезке  $\left[0, \tilde{d}_{\rm H}\right]$  единичное значение в ПП и имеет равномерные пульсации на бесконечном полуинтервале  $\left[\tilde{\vec{r}}_{\rm H}, \infty\right)$  в ПЗ. Система 16 уравнений для определения неизвестных параметров модуля ПФ КФНЧ имеет вид [6]:

$$\begin{split} & \left[ 20 \lg \left[ \tilde{K} \tilde{a}_{1} \tilde{a}_{2} / \left( 2\tilde{b}_{0} - \tilde{K} \tilde{a}_{1} \tilde{a}_{2} \right) \right] = \tilde{\delta}; \\ & \tilde{H}_{5HY} \left( \tilde{\varpi}_{Hi} \right) = 2 - \tilde{K} \tilde{a}_{1} \tilde{a}_{2} / \tilde{b}_{0}, i = 2, 4; \\ & \tilde{H}_{5HY} \left( \tilde{\varpi}_{Hi} \right) = \tilde{K} \tilde{a}_{1} \tilde{a}_{2} / \tilde{b}_{0}, i = 3, 5; \\ & \tilde{H}_{5HY} \left( \tilde{d}_{H} \right) = 2 - \tilde{K} \tilde{a}_{1} \tilde{a}_{2} / \tilde{b}_{0}; \\ & \tilde{H}_{5HY} \left( \tilde{d}_{H} \right) = 1 / \sqrt{2}; \\ & \tilde{H}_{5HY} \left( \tilde{\varpi}_{Hh} \right) = \tilde{H}_{5HY} \left( \tilde{\tilde{r}}_{H} \right), h = 1, 2; \\ & d \tilde{H}_{5HY} \left( \tilde{\varpi}_{Hi} \right) / d \tilde{\varpi}_{Hi} = 0, i = 2 - 5; \\ & d \tilde{H}_{5HY} \left( \tilde{\varpi}_{Hh} \right) / d \tilde{\varpi}_{Hh} = \tilde{\delta}, \end{split}$$

где  $\tilde{\overline{\omega}}_{\mathrm{H}i}$  (i = 2-5) – нормированные частоты экстремумов АЧХ в ПП;  $\tilde{\overline{\omega}}_{\mathrm{H}h}^{\mathrm{max}}$  (h = 1, 2) – нормированные частоты максимумов АЧХ в ПЗ.

В результате решения системы уравнений получены параметры АЧХ КФНЧ-прототипа:

$$\tilde{\delta} = 1.28 \cdot 10^{-8} \text{ дБ}, \ \bar{\delta} = 33.831 \text{ дБ}, \ \bar{K} = 0.149931,$$
  
 $\tilde{b}_4 = 3.642535, \ \bar{b}_3 = 6.535050; \ \bar{b}_2 = 7.339901,$   
 $\tilde{b}_1 = 5.179548, \ \bar{b}_0 = 2.217913, \ \tilde{r}_{\text{H}} = 1.462141,$   
 $\tilde{d}_{\text{H}} = 0.209443.$ 

Нормированная ширина переходной области АЧХ  $\tilde{\vec{r}}_{\rm H} - \tilde{\vec{d}}_{\rm H} = 1.252698$ . Подставив найденные коэффициенты в (13) при n = 5, получим выражение ПФ КФВЧ пятого порядка  $\tilde{\vec{H}}_{5\,{\rm B}{\rm Y}}(s_{\rm H})$ , соответствующее принятым начальным условиям.

Схема ФВЧ пятого порядка с двумя полюсами затухания в ПЗ [0,  $\omega_c$ ] приведена на рис. 5.

Приравняв коэффициенты при одинаковых степенях переменной  $s_{\rm H}$  в выражениях для  $H_{5\,\Phi{\rm B}{\rm Y}}(s_{\rm H})$  и  $\tilde{H}_{5\,{\rm B}{\rm Y}}(s_{\rm H})$ , получим систему восьми уравнений для определения 10 неизвестных параметров КФВЧ: r,  $L_1$ ,  $L_2$ ,  $C_2$ ,  $L_3$ ,  $L_4$ ,  $C_4$ ,  $L_5$ , R,  $K_y$ . Положим  $\omega_{\rm c} = 10^5$  рад/с, r = 82 Ом, R = 100 Ом. В этих условиях система уравнений имеет 5 решений (табл. 3).

Все нули и полюсы функции  $Z_{5\Phi B \Psi}(s)$  для найденных решений лежат в левой полуплоскости комплексной переменной p, нули равны между собой. При определении устойчивости АЧХ по каждому параметру  $\chi_{ji}$  интегрирование осуществлялось



|                             | Таолица          |       |       |       |       |
|-----------------------------|------------------|-------|-------|-------|-------|
| Пара-                       | Номер решения, і |       |       |       |       |
| метр                        | 1                | 2     | 3     | 4     | 5     |
| <i>L</i> <sub>1</sub> , мГн | 1.763            | 1.885 | 3.647 | 3.898 | 5.723 |
| <i>L</i> <sub>2</sub> , мГн | 2.958            | 6.881 | 4.824 | 1.940 | 3.836 |
| С₂, нФ                      | 80.0             | 90.8  | 129.6 | 122.0 | 162.9 |
| <i>L</i> <sub>3</sub> , мГн | 0.656            | 0.543 | 0.522 | 0.529 | 0.642 |
| <i>L</i> <sub>4</sub> , мГн | 6.439            | 2.436 | 2.672 | 8.190 | 2.692 |
| С₄, нФ                      | 97.1             | 97.2  | 88.6  | 76.3  | 87.9  |
| <i>L</i> <sub>5</sub> , мГн | 3.212            | 4.698 | 1.484 | 2.289 | 0.761 |
| Ky                          | 1.82             | 1.82  | 1.82  | 1.82  | 1.82  |

|       |                                                                                              |          |          |          | Таблица 4 |  |
|-------|----------------------------------------------------------------------------------------------|----------|----------|----------|-----------|--|
|       | Номер решения і                                                                              |          |          |          |           |  |
| χi    | 1                                                                                            | 2        | 3        | 4        | 5         |  |
| ,     | $\left  \widehat{s}_{5 \Phi \mathrm{BY}_{i}}^{H} \left\langle \chi_{j} \right\rangle  ight.$ |          |          |          |           |  |
| $L_1$ | 4.593283                                                                                     | 1.216511 | 6.941704 | 5.190389 | 15.021041 |  |
| $L_2$ | 0.031551                                                                                     | 1.069627 | 3.377133 | 0.052165 | 4.573784  |  |
| $C_2$ | 0.007274                                                                                     | 0.045501 | 0.217367 | 0.014972 | 0.256541  |  |
| $L_3$ | 0.024421                                                                                     | 0.015879 | 0.022888 | 0.015047 | 0.062464  |  |
| $L_4$ | 2.570187                                                                                     | 0.050598 | 0.032090 | 1.025526 | 0.026010  |  |
| $C_4$ | 0.137145                                                                                     | 0.013709 | 0.007787 | 0.040910 | 0.005987  |  |
| $L_5$ | 3.012230                                                                                     | 4.614516 | 1.131073 | 1.099973 | 0.102279  |  |
| r     | 0.008149                                                                                     | 0.005740 | 0.004909 | 0.005740 | 0.005411  |  |
| R     | 0.005902                                                                                     | 0.006580 | 0.006089 | 0.006580 | 0.005997  |  |
|       | $\hat{\overline{S}}_{5\Phi \mathrm{BY}_{i}}^{H}$                                             |          |          |          |           |  |
|       | 0.001959                                                                                     | 0.001977 | 0.001733 | 0.001980 | 0.001704  |  |

в пределах от 0 до  $\omega_{\Pi\Pi\Pi} = 3 \cdot 10^5$  рад/с и области изменения параметра  $(1 \mp 0.1) \chi_{ji}$ . Результаты расчета устойчивостей АЧХ по всем параметрам  $s_{5\Phi B \Psi_i}^H \langle \chi_j \rangle$ , за исключением  $K_y$ , и комплексной оценки устойчивостей АЧХ  $S_{5\Phi B \Psi_i}^H$  приведены в табл. 4.

ФЧХ ФВЧ пятого порядка имеет вид

$$\varphi_{5\Phi B \Psi}(\omega) = 2\pi + + \arctan \frac{\left[\beta_{54}^{(B)} + \gamma_{54}^{(B)}\right]\omega^4 - \left[\beta_{52}^{(B)} + \gamma_{52}^{(B)}\right]\omega^2 + \beta_{50}^{(B)}}{\omega^5 - \left[\beta_{53}^{(B)} + \gamma_{53}^{(B)}\right]\omega^3 + \left[\beta_{51}^{(B)} + \gamma_{51}^{(B)}\right]\omega}$$

Устойчивость ФЧХ к изменениям параметров фильтра определялась с помощью суммы интегралов

$$I_{5\Phi BY_{i}}^{\Phi}(\chi_{j}) =$$

$$= \int_{\omega_{c}}^{\omega_{1}} \left[ \varphi_{5\Phi BY}(\omega, \chi_{j}) - \varphi_{5\Phi BY}(\omega, \chi_{ji}) \right]^{2} d\omega +$$

$$+ \int_{\omega_{2}}^{\omega_{\Pi \Pi 2}} \left[ \varphi_{5\Phi BY}(\omega, \chi_{j}) - \varphi_{5\Phi BY}(\omega, \chi_{ji}) \right]^{2} d\omega,$$

где  $\omega_1$  и  $\omega_2$  – решения уравнений  $\phi_5 \phi_{BY} \left[ \omega_{1,2}; (1 \pm 0.1) \chi_{ji} \right] = 3\pi/2$ , а верхний предел интегрирования принят  $\omega_{\Pi\Pi 12} = 10^6$  рад/с. Результаты расчетов устойчивости ФЧХ приведены в табл. 5.

С учетом максимального значения комплексной характеристики  $\tilde{S}_{5\Phi H \Psi_4}^{H} = 0.00198$  примем к реализации четвертое решение с расчетными но-

|       |                 |          |                                                                                           |          | Таблица З |
|-------|-----------------|----------|-------------------------------------------------------------------------------------------|----------|-----------|
|       | Номер решения і |          |                                                                                           |          |           |
| χį    | 1               | 2        | 3                                                                                         | 4        | 5         |
| N     |                 |          | $\frac{\bar{s}_{\phi}}{\bar{s}_{5\Phi\mathrm{BH}_{i}}}\left\langle \chi_{j}\right\rangle$ | Q ~      |           |
| $L_1$ | 0.043146        | 0.075042 | 0.326645                                                                                  | 0.319411 | 0.625087  |
| $L_2$ | 0.031134        | 0.319644 | 0.748038                                                                                  | 0.037878 | 2.519916  |
| $C_2$ | 0.002401        | 0.003625 | 0.007961                                                                                  | 0.003529 | 0.018531  |
| $L_3$ | 0.003009        | 0.002593 | 0.003050                                                                                  | 0.002621 | 0.004435  |
| $L_4$ | 0.645924        | 0.043169 | 0.028346                                                                                  | 0.366211 | 0.023742  |
| $C_4$ | 0.006942        | 0.003595 | 0.002348                                                                                  | 0.003598 | 0.001956  |
| $L_5$ | 0.154373        | 0.328646 | 0.026485                                                                                  | 0.078333 | 0.007271  |
| r     | 0.899760        | 0.175894 | 0.214672                                                                                  | 0.175894 | 0.121493  |
| R     | 0.212198        | 0.146238 | 0.465236                                                                                  | 0.146238 | 0.179780  |
|       | Ξσφ<br>ΞσβΨ,    |          |                                                                                           |          |           |
|       | 0.001039        | 0.001005 | 0.001038                                                                                  | 0.001000 | 0.001014  |

миналами емкостей, близкими к ряду E24:  $C_2 = 120 \text{ нФ}, \quad C_4 = 75 \text{ нФ}.$  АЧХ  $\tilde{H}_{5 \oplus \text{B} \text{H}}^{\text{HOM}}(\omega)$ КФВЧ с указанными значениями емкостей, соответствующими номинальному ряду резисторами и скорректированными значениями индуктивностей контуров  $L_2 = 1.972 \text{ мГн}, \quad L_4 = 8.333 \text{ мГн}$ представлена на рис. 6.

1. Матханов П. Н. Основы синтеза линейных электрических цепей. М.: Высш. шк., 1978. 208 с.

2. Белецкий А. Ф. Теория линейных электрических цепей: учеб. 2-е изд. СПб.: Лань, 2009. 554 с.

 Червинский Е. Н. Реализация электрических фильтров лестничной структуры // Изв. вузов России.
 Радиоэлектроника. 2013. Вып З. С. 24–37.

4. ГОСТ 28884-90 (МЭК 63-63). Межгосударственный стандарт. Ряды предпочтительных значений для резисторов и конденсаторов. М.: Стандартинформ, 2006. 13 с.

Статья поступила в редакцию 23 января 2017 г.



Таким образом, при наличии нескольких решений системы уравнений к реализации следует принимать то решение, которое дает близкое к максимальному значение комплексной оценки устойчивости АЧХ или ФЧХ, обеспечивающей решение конкретной задачи синтеза. Введенные определения зависимостей отклонения реальных характеристик от синтезируемых при разбросе значений отдельных параметров  $\chi_j$  дают возможность последовательного подбора элементов фильтра с учетом "веса" каждого элемента в суммарной оценке устойчивости частотной характеристики.

### СПИСОК ЛИТЕРАТУРЫ

5. Баскаков С. И. Радиотехнические цепи и сигналы. М.: Высш. шк., 2000. 464 с.

6. Червинский Е. Н. Расчет передаточных функций фильтров с равноволновыми на отрезке и бесконечном полуинтервале амплитудно-частотными характеристиками // Изв. вузов России. Радиоэлектроника. 2014. Вып. 4. С. 13–28.

7. Толстов Ю. Г., Теврюков А. А. Теория электрических цепей: учеб. пособие для электротехнич. и радиотехн. специальностей вузов. М.: Высш. шк., 1971. 296 с.

Для цитирования: Червинский Е. Н. Устойчивость частотных характеристик к изменениям параметров электрического фильтра // Изв. вузов России. Радиоэлектроника. 2017. № 3. С. 24–38.

*Червинский Евгений Наумович* – доктор технических наук (2008), старший научный сотрудник (1985), начальник НТО ЗАО "СИМЕТА" (Санкт-Петербург). Автор 86 научных работ. Сфера научных интересов – системы точного времени. E-mail: enchervinsky@simeta.ru

E. N. Chervinskiy Closed JSC "SIMETA" (Saint Petersburg)

### Frequency Responses Resistance to Variations of Electric Filter Parameters

**Abstract.** When electric filter designs "on the whole" circuit's parameters are determined as a result of solving the system of equations formed by equating of coefficients at equal powers of the variable in terms of desirable transfer function (TF) and TF filter. The solution of the system of nonlinear equations is the set (or sets) of filter parameters. The transition to practical realization requires bringing the filter parameters to the standard range of nominal values. The frequency responses of the filter are distorted, when the calculated values are replace on the nominal values. Moreover, the nominal value scales themselves have different range of values depending on the selected range. The purpose of the article is to de-

velop evaluation methods of amplitude- and phase-frequency responses resistance of low-pass and high-pass filters to parameter variations during the filters realization.

The integral square function of a variable is taken as a measure of deviation of the real frequency response from calculated characteristic.

The specific parameter response resistance is defined as the inverse average value of the integral function at the given range of the parameter variations. The inverse sum of average values of the integral function for the specific set of elements serves as integrated evaluation of response resistance to the filters parameter variations. In case there are several solutions of the system of equations, providing filter synthesis, the one should be used that gives closest to the maximum value of integrated evaluation of resistance. The introduced definitions allow to fulfill the successive selection of filter elements in the light of the impact of each element in the total evaluation of the frequency response stability.

**Key words:** Transfer function, synthesis of the filter "on the whole", inverse low-pass filter, quasi-elliptic low-pass filter, high-pass filter, response resistance by parameter, complex valuation of resistance

#### REFERENSES

1. Matkhanov P. N. *Osnovy sinteza lineinykh elektricheskikh tsepei* [Fundamentals of Linear Electric Circuit Synthesis]. Moscow, *Vyssh. shk.*, 1978, 208 p. (In Russian)

2. Beletsky A. F. *Teoriya lineinykh elektricheskikh tsepei: uchebnik. 2-e izd.* [Theory of Linear Electric Circuits]. Saint Petersburg, *Lan*, 2009, 554 p. (In Russian)

3. Chervinskiy E. N. Realization of Ladder Structure Electric Filters. *Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika.* 2013, no. 3, pp. 24–37. (In Russian)

4. GOST Standard 28884-90 (IEC 63-63). Preferred Number Series for Resistors and Capacitors. Moscow, Standardinform, 2006, 13 p. (In Russian) 5. Baskakov S. I. *Radiotekhnicheskie tsepi i signaly* [Radiotechnical Circuits and Signals]. Moscow, *Vyssh. shk.*, 2000, 464 p. (In Russian)

6. Chervinskiy E. N. Calculation of Transfer Functions of Filters with Equiwave at the section and Infinite Half-Interval by Amplitude-Frequency Characteristics. *Izvestiya Vuzov Rossii. Radioelektronika.* 2014, no. 4, pp. 13–28. (In Russian)

7. Tolstov Yu. G., Tevryukov A. A. *Teoriya elektricheskikh tsepei: ucheb. posobie dlya elektrotekhnich. i radiotekhn. spetsial'nostei vuzov* [Theory of Electric Circuits. Study Guide for Electrical and Radio Engineering Universities]. Moscow, *Vyssh. shk.*, 1971, 296 p. (In Russian)

Received January, 23, 2017

For citation: Chervinskiy E. N. Frequency Responses Resistance to Variations of Electric Filter Parameters. *Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika* [Journal of the Russian Universities. Radioelectronics]. 2017, no. 3, pp. 24–38. (In Russian)

*Eugeny N. Chervinskiy* – D.Sc. in Engineering (2008), Senior scientist (1985), the chief of the department of closed JSC "SIMETA" (Saint Petersburg). The author of 86 scientific publications. Scientific interests: precision time systems.

E-mail: enchervinsky@simeta.ru

В статье Е. Н. Червинского "Устойчивость частотных характеристик к изменениям параметров электрического фильтра" // Изв. вузов России. Радиоэлектроника. 2017, № 3. С. 24–38, допущен ряд опечаток, а именно:

С. 26, 27, таблица 1. Вместо  $\omega_{\Pi m}^2$  в ряде строк следует читать  $\omega_{pm}^2$ .

С. 27, окончание табл. 1. Вместо  $\mu_9^{\rm H}$  в ряде строк следует читать  $\mu_q^{\rm (H)}$  .

С. 27, окончание табл. 1, строка 3 снизу. Вместо повторной записи предыдущей строки

 $\beta_{91}^{(H)} = (C_1 + C_3 + C_5 + C_7 + C_9) / (L_2 L_4 L_6 L_8 \mu_9^H)$ следует читать:  $\beta_{90}^{(H)} = 1 / [L_2 L_4 L_6 L_8 \mu_9^{(H)} R].$ 

С. 30, строка 6 снизу. Следует читать  $\bar{H}_3(\omega_{\rm H}) = \bar{K} \left| \omega_{\rm H}^2 - \bar{a}_1 \right| / \sqrt{\left( \omega_{\rm H}^3 - \bar{b}_1 \, \omega_{\rm H} \right)^2 + \left( \bar{b}_2 \, \omega_{\rm H}^2 - \bar{b}_0 \right)^2}$ .

С. 32, строка 1 сверху. Следует читать  $\bar{S}_{3\Phi H \Psi_{\pm}}^{H}$ 

С. 32, строка 14 сверху. Следует читать  $\tilde{\overline{\omega}}_{10} = 2.4 \omega_c$  рад./с.

С. 33, таблица 2, строка 2 сверху. Вместо  $\beta_{32}^{(H)}$  следует читать  $\beta_{32}^{(B)}$ . Строка 15 сверху. Вместо  $\gamma_{60}^{(B)}$  следует читать  $\gamma_{50}^{(B)}$ .

С. 34, продолжение табл. 2, с. 35, окончание табл. 2. Вместо  $\omega_{\pi m}^2$  в ряде строк следует читать  $\omega_{pm}^2$ .