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Аннотация 
Введение. Повышение разрешающей способности радиолокационных станций, превышающей рэлеевский пре-
дел, особенно важно для современных радиоэлектронных систем, функционирующих в условиях низкого отно-
шения сигнал/шум и интенсивных внешних помех. Данная задача приобретает ключевое значение для обеспече-
ния точного обнаружения и идентификации объектов на значительных расстояниях, что открывает широкие воз-
можности для применения этой технологии. Один из эффективных методов обработки – инверсная фильтрация 
(ИФ), однако ее эффективность при традиционной реализации значительно снижается с ухудшением помеховой 
обстановки, что ограничивает область применения в реальных ситуациях. 
Цель работы. Разработка и исследование подхода, направленного на повышение эффективности ИФ посред-
ством внедрения и использования метода коррекции базиса, что позволяет улучшить качество обработки сиг-
налов и повысить устойчивость системы к помехам. 
Материалы и методы. Исследование основано на математическом моделировании процессов фильтрации и 
анализе влияния различных параметров на эффективность ИФ. Моделирование процессов осуществлялось в 
специально разработанном программном обеспечении. Использованы методы теории обработки сигналов, 
включая теорию матриц и теорию вероятностей. 
Результаты. Предложен метод коррекции базиса, повышающий эффективность ИФ за счет увеличения отношения 
сигнал/шум на выходе фильтра. Получены зависимости отношения сигнал/шум от параметров коррекции. Введено 
понятие среднего квадрата нормы импульсной характеристики фильтра, что обеспечивает дополнительный анали-
тический инструмент для оценки и оптимизации метода. Предложен практический подход к реализации метода для 
повышения разрешающей способности радиолокационных систем. 
Заключение. Метод коррекции базиса позволяет повысить эффективность ИФ и расширяет возможности ее 
использования в условиях низкого входного отношения сигнал/шум. Вклад исследования заключается в раз-
работке новой методики улучшения качества обработки сигналов в радиолокационных системах, что позво-
ляет расширить их применение даже при неблагоприятных условиях приема сигнала. 
Ключевые слова: инверсная фильтрация, повышение отношения сигнал/шум, сжатие простого сигнала, 
нестационарный фильтр, коррекция базиса 
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Abstract 
Introduction. Enhancing the resolution of radar stations beyond the Rayleigh limit is particularly important for 
modern radio electronic systems operating under conditions of low signal-to-noise ratios and intense external 
interference. This task becomes crucial for ensuring accurate detection and identification of objects at significant 
distances, which extend possibilities for applying this technology. Inverse filtering (IF) is an effective processing 
method; however, in standard cases, its efficiency depends significantly on the noise environment, limiting its 
application in real-world scenarios. 
Aim. Development and investigation of an approach aimed at enhancing IF efficiency by introducing a basis correc-
tion method, which improves signal processing quality and increases system robustness to interference. 
Materials and methods. The research was carried out using the methods of mathematical simulation of filtering 
processes and analysis of the influence of various parameters on the IF efficiency. Simulation studies were conduct-
ed in a specially developed software environment. The methods of signal processing theory, including matrix theory 
and probability theory, were used. 
Results. A method of basis correction is proposed, which increases the efficiency of IF by increasing the signal-to-
noise ratio at the filter output. Dependencies of the signal-to-noise ratio on correction parameters are obtained. The 
concept of the mean square of the filter's impulse response norm is introduced, providing an additional analytical 
tool for evaluating and optimizing the method. A practical approach for implementing the method to enhance the 
resolution of radar systems is proposed. 
Conclusion. The basis correction method improves the efficiency of IF and extends its application capabilities in the 
conditions of a low input signal-to-noise ratio. The research significance consists in the development of a novel 
methodology for improving signal processing quality in radar systems, which extends their applicability under ad-
verse signal reception conditions. 
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Введение. В современных радиолокацион-
ных системах одним из ключевых требований 
является достижение высокой разрешающей 
способности, которая превышает "рэлеевский 
предел", что особенно актуально при работе в 
условиях воздействия шума [1]. Возможность 
сжатия простого сигнала во временной обла-
сти – основное достоинство инверсной филь-
трации (ИФ), методы реализации которой по-
дробно рассматриваются в [2, 3]. В [4] приве-
ден подход к обработке непрерывных радио-

локационных сигналов, близкий по структуре 
к ИФ. В [5–8] представлены примеры приме-
нения ИФ для повышения разрешающей спо-
собности в радиолокационных системах, 
включая реализацию в реальных задачах об-
работки импульсных сигналов. При этом ин-
версная фильтрация находит свое применение 
не только в системах обработки сигналов при 
решении задач разрешения сигналов, но и в 
системах обработки изображений при реше-
нии задач восстановления изображений [9]. 
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В [10, 11] предложена методика оценки эф-
фективности ИФ по значению отношения ко-
эффициентов шума для инверсного и согласо-
ванного фильтров. В [11] показано, что коэф-
фициент шума, определяемый как отношение 
выходного ко входному отношению сиг-

нал/шум (ОСШ), для ИФ в 2 2D s h=  раз ху-
же по сравнению с согласованным фильтром 
(СФ), где s  и h  – нормы сигнала и импуль-
сной характеристики (ИХ) инверсного фильтра 
соответственно. Инверсные фильтры применя-
ются в случаях, когда запаздывающие копии 
сигнала могут представлять гораздо большую 
опасность, чем флуктуационные шумы. Значе-
ние параметра D позволяет оценить равномер-
ность спектрального состава сигнала. При рав-
номерном распределении спектра сигнала D = 1 
и эффективности инверсного и согласованного 
фильтров одинаковы. По мере роста отклонения 
спектральных компонент сигнала друг от друга 
параметр D увеличивается. Если хотя бы одна из 
спектральных компонент обращается в ноль, 
параметр D стремится к бесконечности. Цель 
описываемой работы – разработка и исследова-
ние подхода к повышению эффективности ИФ. 

Мгновенное значение сигнала на выходе ли-
нейного фильтра ( ){ },Y y n=  0,1, , 1,n N= −  
есть взвешенная сумма отсчетов сигнала 

( ){ },S s n=  0,1, , 1.n N= −  В качестве весо-
вых коэффициентов выступают отсчеты ИХ 
фильтра ( ){ }.H h n=  ИХ согласованного филь-
тра в матричном виде для случая циклической 
фильтрации можно представить как 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

СФ

1 0 ... 2
2 1 ... 3

.
... ... ... ...

0 1 ... 1

s N s s N
s N s N s N

H

s s s N

 − −
 − − − =
 
 

− 

(1) 

Матрица (1) является матрицей Теплица, ха-
рактеризующейся идентичными элементами на 
диагоналях, которые параллельны главной диа-
гонали [12]. Структура матрицы СФH  такова, 
что каждая ее строка отражает ИХ СФ на отдель-
ных этапах формирования выходного сигнала. 
При этом под этапом фильтрации понимается 
временной промежуток образования мгновенного 

значения выходного сигнала. Важно отметить 
циклическую взаимосвязь между ИХ стационар-
ного фильтра на разных этапах обработки. Фор-
мирование импульсной характеристики инверс-
ного фильтра основано на операции обращения 
матрицы СФ ,H  что математически записывается 

как 1
и.ф СФ .H H −=  При этом каждый столбец по-

лученной матрицы и.фH  представляет собой ИХ 
стационарного инверсного фильтра на соответ-
ствующем этапе фильтрации. 

Метод коррекции базиса. Метод основан на 
коррекции полученной ранее матрицы СФH  ИХ 
СФ. Коррекция заключается в добавлении к мат-
рице СФH  корректирующей матрицы B, содер-
жащей компоненты β ,k  кор1, 2, , ,k k=   где 

корk  – число корректируемых компонент [13–15]: 

1

2

3

0 ... 0 0
0 ... 0 0
0 ... 0 0
... ... ... ... ...
0 ... 0 0 0

B

β 
 β 
 = β
 
 
  

. 

При этом кор .k N<  В итоге матрица (1) для 
ИХ СФ преобразуется следующим образом: 

 кор СФ .H H B= +  (2) 

Вид корректирующей матрицы B получен эм-
пирическим путем для примера, рассматриваемо-
го в данной статье, и требует дальнейшего иссле-
дования. В результате коррекции нарушается цик-
лическая взаимосвязь между импульсными харак-
теристиками на различных этапах обработки сиг-
нала. Это означает, что матрица (2) описывает ИХ 
фильтра, квазисогласованного с сигналом S. Что-
бы определить импульсную характеристику ин-
версного фильтра с учетом коррекции, применяет-

ся операция обращения матрицы 1
и.ф.к кор .H H −=  

Каждый столбец матрицы и.ф.кH  представляет 
собой ИХ инверсного фильтра на отдельных эта-
пах фильтрации. В результате такой операции 
нарушается циклическая связь между ИХ инверс-
ного фильтра, что делает фильтр нестационарным.  

Для повышения эффективности ИФ требует-
ся решить задачу оптимизации выбора парамет-
ров коррекции β ,k  кор1, 2, , ,k k=   исходя из 
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условия: 2
и.ф.к min,

kr
H

β
→  где 2

и.ф.к r
H  – 

квадрат нормы ИХ фильтра на r-м этапе цикли-
ческой обработки, т. е. квадрат нормы r-го столб-
ца матрицы и.ф.к .H  Параметры коррекции kβ  
рассчитывались методом поиска решения исчер-
пыванием всевозможных вариантов при ограни-
чении числа корректируемых компонент кор .k  

Введем обозначение , ,m nA  , 0,1, , 1,m n N= −  

для алгебраических дополнений элементов 
,m nh  в матрице (2). Союзная матрица для (2) 

будет иметь вид 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

...

...

... ... ... ...
...

N

N
H

N N N N

A A A

A A A
S

A A A

−

−

− − − −

 
 
 =  
 
  

. 

На основании этого формируем взаимную 
матрицу к матрице (2): 

0,0 1,0 1,0

0,1 1,1 1,1
кор

0, 1 1, 1 1, 1

...

...
.

... ... ... ...
...

N

NT
H

N N N N

A A A

A A A
H S

A A A

−

−

− − − −

 
 
 = =  
 
  

  

Согласно теореме о произведении квадрат-
ной матрицы на ее взаимную матрицу: 

кор кор кор кор корH H H H H E= =  , 

где корH  – определитель матрицы (2), а E – 

единичная матрица. Следовательно, импульс-
ная характеристика инверсного фильтра с кор-
рекцией определяется как 

1
и.ф.к кор кор

кор

1H H H
H

−= =  . 

В матричной форме представление инверс-
ного фильтра можно записать следующим об-
разом: 

1
и.ф и.ф.к кор кор

кор
.SY SH SH H

H
−= = =   

В данном случае сигнал S представлен как 
матрица-строка. Следовательно, в результате 

перемножения матрицы-строки на квадратную 
матрицу N × N получим матрицу-строку и.фY . 

Докажем, что [ ]и.ф и.ф.к 0 0 ... 1 .Y SH= =  
Для этого составим произведение 

( ) ( ) ( )

( ) ( ) ( )

и.ф и.ф и.ф и.ф

кор

кор кор

0,0 1,0 1,0

0,1 1,1 1,1

0, 1 1, 1 1, 1

0 1 ... 1

1 0 1 ... 1

...

...
.

... ... ... ...
...

N

N

N N N N

Y y y y N

SH
s s s N

H H

A A A

A A A

A A A

−

−

− − − −

 = − = 

 = = − × 

 
 
 ×  
 
  



 

В соответствии с правилом умножения мат-
риц имеем: 

( )

( ) ( ) ( )

( )

и.ф

, 0 ,1 , 1
1

,
0

0 1 ... 1

.

k k k N
N

k r
r

y k

s A s A s N A

s r A

−

−

=

=

= + + + − =

= ∑

 

Основываясь на свойствах определителя 
матрицы, в частности, что сумма произведе-
ний элементов любой строки (столбца) на их 
алгебраические дополнения равна определи-
телю матрицы, а сумма произведений эле-
ментов одной строки (столбца) на алгебраи-
ческие дополнения соответственных элемен-
тов другой строки (столбца) равны нулю, и 
учитывая, что в матрице (2) (N – 1)-я строка 
совпадает с матрицей-строкой сигнала S, 
приходим к следующему выводу: 

( ) р
и.ф

ко при 1,

0 при 1.

H k N
y k

k N

 = −= 
≠ −

 

Отсюда следует: 

[ ]

и.ф и.ф.к кор
кор

кор
кор

1 0 0 ... 0 0 ... 1 ,

SY SH H
H

H
H

= = =

 = = 



 

что подтверждает верность предположения. 
Рассмотрим ситуацию, когда на входе филь-

тра сигнал ( ){ },U u n=  0,1, , 1,n N= −  пред-
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ставляет собой результат сложения двух сигна-

лов ( ){ }S s n=  и { ( )},d dS s n=  0,1, , 1,n N= −  
,d N<  где d – значение сдвига сигнала, 

( ) ( ).ds n s n d= +  Докажем, что и.ф и.ф.кY UH= =  

[ ]0 0 ... 1 0 ... 1 .=  При этом положение 
второго отклика определяется значением сдви-
га d. Составим произведение 

( ) ( ) ( )и.ф и.ф и.ф и.ф

кор кор кор

кор кор

0 1 ... 1

.
d

Y y y y N

UH SH S H
H H

 = − = 

+
= =

  

 

С учетом того, что в матрице и.ф.кH  (N – 1)-я 
строка равна матрице-строке сигнала S, а d-я 
строка равна матрице-строке смещенного сиг-

нала ,dS  получим: 

( ) кор при 1 или ,

0 при 1.

H k N k d
y k

k N

 = − == 
≠ −

 

Следовательно: 

[ ]

и.ф

кор кор
кор

1 0 0 ... 0 ...

0 0 ... 1 0 ... 1 ,

Y

H H
H

=

 = = 

=

 

что и требовалось доказать. Однако для полу-
чения такого результата следует наложить 
ограничение кор .d N k< −  Данное ограничение 
связано с изменениями алгебраических допол-
нений элементов матрицы и.ф.кH при проведе-
нии корректировки. 

Эффективность инверсной фильтрации с 
коррекцией базиса. Для исследования эффек-
тивности метода ИФ с коррекцией базиса раз-
работано программное обеспечение. Исследо-
вание проводилось для дискретного импульс-
ного сигнала с треугольной симметричной 
формой длительностью 30 отсчетов. На рис. 1 
представлены результаты циклической ИФ 
сигнала без коррекции (рис. 1, а) и с коррекци-
ей базиса (рис. 1, б), а на рис. 2 – для группово-
го сигнала, представляющего собой сумму двух 
сигналов. При этом временной сдвиг между 
сигналами составлял 14 отсчетов (0.47 от рэле-

 

Рис. 1. Результат циклической ИФ сигнала треугольной формы: а – без коррекции; б – с коррекцией 
Fig. 1. Result of cyclic IF of a triangular-shaped signal: а – without correction; б – with correction 
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евского предела). В данном случае заданы сле-
дующие параметры коррекции: 1β 8,= −  

2β 2,= −  3β 2.= −  ОСШ на входе составляло 
46 дБ. Результаты ИФ с коррекцией представ-
лены на рис. 1, б и рис. 2, б.  

Анализ экспериментальных исследований 
(рис. 1 и 2) позволяет сделать вывод, что при-
менение коррекции при ИФ сигналов сохраняет 
способность инверсного фильтра разрешать 
сигналы при перекрытии, меньшем рэлеевского 
предела. Кроме того, даже визуально можно 
отметить уменьшение дисперсии шума. 

Проведено исследование эффективности ме-
тода ИФ с использованием коррекции базиса. При 
расчете ОСШ на выходе инверсного фильтра 
предполагается, что мощность сигнала равна еди-
нице: 1.SP =  Тогда получаем следующее выраже-
ние для ОСШ, дБ: 

вых
ш

110lgq
P

 =  
 

, 

а мощность шума прямо пропорциональна 
квадрату нормы ИХ фильтра: 

22 2
ш вых вх и.ф ,P H= σ = σ  

где 2
вхσ  – дисперсия входного шума. Тогда от-

ношение сигнал/шум на выходе ИФ, дБ: 

 вых 22
вх и.ф

110lgq
H

 =  
 σ 

.  

При использовании метода ИФ с коррекци-
ей базиса квадрат нормы ИХ фильтра 

2
и.ф.к r

H  принимает разные значения на каж-

дом r-м этапе циклической обработки. Мощ-
ность выходного шума определим как среднее 
значение по всем этапам фильтрации: 

 
1

2 2
вых вых,

0

1 .
N

r
rN

−

=
σ = σ∑   

Таким образом, при работе с нестационар-
ным инверсным фильтром возникает необхо-
димость введения нового понятия – среднего 
значения квадрата нормы ИХ фильтра: 

 
12 2

и.ф.к и.ф.к
0

1 .
N

rr
H H

N

−

=
= ∑  (3) 

 

Рис. 2. Результат циклической ИФ для группового сигнала: а – без коррекции; б – с коррекцией 
Fig. 2. Result of cyclic IF for a group signal is: а – without correction; б – with correction 
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Например, при входном ОСШ по мощности 
вх 15.5q = дБ выходной показатель ОСШ для 

инверсного фильтра без коррекции составляет
вых 33q = − дБ, тогда как для СФ он достигает 

33.5 дБ. Таким образом, разница в эффективно-
сти D = 66.5 дБ. 

На рис. 3 показано, как изменение парамет-
ров коррекции 2β  и 3β  при 1β 8= −  влияет на 
выходное ОСШ при заданных условиях филь-
трации. Для оценки дисперсии шума на выходе 
фильтра применяется средний квадрат нормы 
ИХ инверсного фильтра (3). 

Таким образом, использование метода кор-
рекции базиса приводит к повышению ОСШ на 
выходе инверсного фильтра. В результате кор-
рекции с параметрами 1β 8,= −  2 3β , β 3< −  и 

2 3β , β 6>  достигается значение ОСШ в –24 дБ, 
что значительно превышает исходный показа-
тель. При этом потери D между инверсным и 
согласованным фильтрами сокращаются до 
57.5 дБ, что расширяет возможности примене-
ния инверсного фильтра при работе с входны-
ми сигналами, имеющими низкое ОСШ. 

Задача разрешения сигналов решается, как 
правило, после обнаружения группового сиг-
нала. Таким образом, имеется возможность 
обеспечить синхронизацию и изменение харак-
теристик фильтра в соответствии с положением 
окна фильтра. На рис. 4 представлен вариант 
реализации инверсного фильтра с коррекцией 
для решения задачи разрешения сигналов. 

После обнаружения группового сигнала в 
блоке обнаружения, состоящем из СФ и поро-
гового устройства ПУ, запускается генератор 
тактовых импульсов ГТИ, синхронизирующих 
работу инверсного фильтра. На вход инверсно-
го фильтра с коррекцией подается сигнал с вы-
хода СФ, задержанный на N отсчетов. Окно 
обработки сигнала в инверсном фильтре выби-
рается равным 2N и более, чтобы иметь воз-
можность обрабатывать перекрывающиеся 
сигналы. На рис. 1 и 2 окно обработки сигнала 
составляло 64 при длительности сигнала 30 
отсчетов, что позволяло обрабатывать пере-
крывающиеся сигналы. 

Сигнал с выхода инверсного фильтра по-
ступает на вход блока контроля уровня сигнала, 
один из выходов которого служит для управле-
ния блоком задержки сигнала. Непосредствен-
но сам инверсный фильтр может быть реализо-
ван по схеме нерекурсивного цифрового филь-
тра на основе дискретной свертки или дискрет-
ного преобразования Фурье. 

Заключение. Представлен подход к повы-
шению эффективности ИФ с помощью метода 
коррекции базиса. В основе метода – введение 
корректирующего компонента на каждом этапе 
процесса фильтрации. При этом нарушается 
циклическая связь между ИХ фильтра на каж-
дом из этапов циклической фильтрации, что 
приводит к нестационарности фильтра. Введено 
понятие – средний квадрат нормы ИХ фильтра. 

 

Рис. 3. Влияние корректирующих параметров 2β  и 3β   
на ОСШ в выходном сигнале инверсного фильтра при 1β 8= −  

Fig. 3. Effect of correction parameters 2β  and 3β   
on the SNR in the IF output signal at 1β 8= −  
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Рис. 4. Структура реализации ИФ с коррекцией 
Fig. 4. Structure of IF implementation with correction 
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Показано, что применение метода коррек-
ции базиса позволяет увеличить ОСШ на вы-
ходе инверсного фильтра. Например, при 
входном ОСШ = 15.5 дБ выходной показатель 
ОСШ без коррекции составляет –32 дБ, тогда 
как при использовании коррекции с опреде-
ленными параметрами он достигает практиче-
ски –24 дБ. В результате потери D между ин-
версным и согласованным фильтрами сокра-

щаются, что обеспечивает возможность при-
менения ИФ при меньших значениях ОСШ на 
входе фильтра. Введено ограничение на раз-
мер сдвига между сигналами в составе груп-
пового сигнала при решении задачи разреше-
ния сигналов с использованием инверсного 
фильтра с коррекцией. Предложен подход 
к реализации инверсного фильтра с коррекци-
ей для решения задачи разрешения сигналов. 
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